Реферат: Расчет и проектирование одноступенчатого зубчатого редуктора

Министерство образования Республики Беларусь

Минский государственный машиностроительный колледж

Расчетно-пояснительная записка

к курсовому проекту по «Технической механике»

Тема: Расчет и проектирование одноступенчатого зубчатого редуктора

Разработал:

учащийся гр.1-Дк

Зеньков Д.И.

Минск 2005


Перечень документов

Расчетно-пояснительная записка

Сборочный чертеж одноступенчатого цилиндрического редуктора

Спецификация

Чертеж вала тихоходного

Чертеж колеса зубчатого


Содержание

1 Краткое описание работы привода

2 Кинематический расчет привода

2.1 Определение требуемой мощности и выбор двигателя

2.2 Определение частоты вращения и угловой скорости каждого вала

2.3 Определение мощностей и вращающих моментов на каждом валу

3 Расчет закрытой зубчатой косозубой передачи

3.1 Исходные данные

3.2 Расчет параметров зубчатой передачи

4 Расчет тихоходного вала привода

4.1 Исходные данные

4.2 Выбор материала вала

4.3 Определение диаметров вала

4.4 Эскизная компоновка вала

4.5 Расчет ведомого вала на изгиб с кручением

5 Расчет быстроходного вала привода

5.1 Исходные данные

5.2 Выбор материала вала

5.3 Определение диаметров вала

5.4 Определение возможности изготовления вала-шестерни

5.5 Эскизная компоновка вала

5.6 Расчет ведомого вала на изгиб с кручением

6 Подбор подшипников быстроходного вала

7 Подбор подшипников тихоходного вала

8 Подбор и проверочный расчет шпонок быстроходного вала

9 Подбор и проверочный расчет шпонок тихоходного вала

10 Выбор сорта масла

11 Сборка редуктора

Список использованной литературы

1 Краткое описание работы привода

Тяговым органом заданного привода является цепной конвейер В цепных передачах (рис.1, а) вращение от одного вала к другому передается за счет зацепления промежуточной гибкой связи (цепи) с ведущим / и ведо­мым 2 звеньями (звездочками).

Рис.1 Схема цепной передачи

В связи с отсутствием проскальзывания в цепных передачах обеспечивается постоянство среднего передаточного числа. Наличие гибкой связи допускает значительные межосевые рас­стояния между звездочками. Одной цепью можно передавать движение одновременно на несколько звездочек (рис.1, б). По сравнению с ременными цепные передачи имеют при прочих равных усло­виях меньшие габариты, более высокий КПД и меньшие нагрузки на валы, так как отсутствует необходимость в большом пред­варительном натяжении тягово­го органа.

Недостатки цепных передач: значительный износ шарниров цепи, вызывающий ее удлине­ние и нарушение правильности зацепления; неравномерность движения цепи из-за геометри­ческих особенностей ее зацеп­ления с зубьями звездочек, в

результате чего появляются до­полнительные динамические нагрузки в передаче; более высокие тре­бования к точности монтажа передачи по сравнению с ременными передачами; значительный шум при работе передачи.

Цепные передачи предназначаются для мощности обычно не более 100 кВт и могут работать как при малых, так и при больших скоростях (до 30 м/с). Передаточные числа обычно не превышают 7.

Применяемые в машиностроении цепи по назначению подразде­ляются на приводные, передающие энергию от ведущего вала к ведо­мому; тяговые, применяемые в качестве тягового органа в конвейерах; грузовые, используемые в грузоподъемных машинах. Из всех типов природных цепей наибольшее распространение имеют роликовые с числом рядов от 1 до 4, втулочные , одно- и двухрядные, и зубчатые.

Кинематическая схема привода цепного конвейера приведена на рис.2.

Вращение привода передается от электродвигателя 1 ведущим звездочкам цепного конвейера 8 посредством клиноременной передачи 2, муфт 3 и 5, косозубого одноступенчатого редуктора 4, цепной передачи 6 и зубчатой открытой прямозубой передачи 7. При этом на кинематической схеме римскими цифрами обозначены тихоходные (I, III, VI) и быстроходные (II, IV, V) валы соответствующих передач.

Рис.2 Кинематическая схема привода цепного конвейера.


2 Кинематический расчет привода

2.1 Определение требуемой мощности и выбор двигателя

Исходные данные:

— тяговое усилие цепи Ft =13кН

— скорость цепи V=0,35 м/с

— шаг тяговой цепи Рt =220мм

— число зубьев ведущих звездочек z=7

— срок службы привода – 4 года в две смены.

Определяем мощность на тихоходном валу привода по формуле (1.1) [1, с.4]

РVI = Ft · V (2.1)

где РVI — мощность на тихоходном валу:

РVI =13·0,25=3,25кВт.

Определяем общий КПД привода по формуле (1.2) [1, с.4]

По схеме привода

(2.2)

где[1, с.5, табл.1.1]: — КПД ременной передачи;

— КПД зубчатой закрытой передачи;

— КПД цепной передачи;

— КПД зубчатой открытой передачи;

— КПД одной пары подшипников качения;

— КПД муфты.

Сделав подстановку в формулу (1.2) получим:

Определяем мощность, необходимую на входе[1, с.4]

(2.3)

где Ртр – требуемая мощность двигателя:

Определяем частоту вращения и угловую скорость тихоходного вала

(2.4)

об/мин

(2.5)

Выбираем электродвигатель [1, с.390, табл. П1, П2]

Пробуем двигатель 4А112М4:

Рдв. =5,5кВт;

nс =1500об/мин;

S=3,7%

dдв. =32мм.

Определяем асинхронную частоту вращения электродвигателя по формуле (1.3) [1,c.6]:

na =nc ·(1-S); (2.6)

na =1500·(1-0,037);

na =1444,5 об/мин

Определяем общее передаточное число привода

; (2.7)

Производим разбивку прердаточного числа по ступеням. По схеме привода

Uобщ. =Uр.п. · Uз.з. · Uц.п. · Uз.о.; (2.8)

Назначаем по рекомендации [1,c.7,c36]:

Uр.п. =3;

Uц.п. =3;

Uз.о. =4; тогда

Uз.з. = Uобщ. /( Uр.п. · Uц.п. · Uз.о. );

Uз.з. =2,94, что входит в рекомендуемые пределы

Принимаем Uз.з. =3.

Тогда


Находим:

(2.9)

;

Допускается ∆U=±3%

Принимаем окончательно электродвигатель марки 4А112М4

2.2 Определение частоты вращения и угловой скорости каждого вала

По формуле (2.5) определяем угловую скорость вала двигателя

;

;

nдв. =1444,5 об/мин.

По схеме привода (рис.1) определяем частоты вращения и угловые скорости каждого вала

; ;

; ;

; ;

; ;

;

; ;

;

;

;

; ;

;

;

что близко к полученному в п.2.1.

2.3 Определение мощностей и вращающих моментов на каждом валу

Определяем мощность на каждом валу по схеме привода

;

;

;

;

; ;

; ;

; ;

; ;

; ;

; ;

что близко к определенному ранее в п.2.1.

Определяем вращающие моменты на каждом валу привода по формуле

(Нм) (2.10)

; ; Нм;

; ; Нм;

; ; Нм;

; ; Нм;

; ; Нм;

; ; Нм;

; ; Нм.

Проверка:

(2.11)

;

Нм

Все рассчитанные параметры сводим в табл.1.

Таблица 1

Параметры кинематического расчета

№ вала n, об/мин ω, рад/с Р, кВт Т, Нм U
Дв. 1444,5 151,27 4,15 27,43 3
I 481,5 50,42 3,985 79,03
1
II 481,5 50,42 3,866 76,67
3
III 160,5 16,8 3,674 218,69
1
IV 160,5 16,8 3,565 212,2
3
V 53,5 5,6 3,353 598,75
4
VI 13,375 1,4 3,187 2276,4

3 Расчет закрытой косозубой передачи

3.1 Исходные данные

Мощность на валу шестерни и колеса Р2 =3,866 кВт

Р3 =3,684 кВт

Вращающий момент на шестерне и колесе Т2 =76,67 Нм

Т3 =218,69 Нм

Передаточное число U=3

Частота вращения шестерни и колеса n2 =481,5 об/мин

n3 =160,5 об/мин

Угловая скорость вращения шестерни и колеса ω2 =50,42 рад/с

ω3 =16.8 рад/с

Передача нереверсивная.

Расположение колес относительно опор симметричное.

3.2 Расчет параметров зубчатой передачи

Выбираем материал для шестерни и колеса по табл.3.3 [1,c.34]:

шестерня – сталь 40Х, термообработка – улучшение 270НВ,

колесо — сталь 40Х, термообработка – улучшение 250НВ.

Определяем допускаемое контактное напряжение по формуле (3.9) [1,c.33]:

(3.1)

где σHlimb – предел контактной выносливости при базовом числе циклов;

КHL – коэффициент долговечности;

[SH ] – коэффициент безопасности;

по [1,c.33]: КHL =1; [SH ] =1,1.

Определяем σHlimb по табл.3.2 [1,c.34]:

σHlimb =2НВ+70; (3.2)

σHlimb1 =2×270+70; σHlimb1 =610МПа;

σHlimb2 =2×250+70; σHlimb1 =570МПа.

Сделав подстановку в формулу (3.1) получим

; МПа;

; МПа.

Определяем допускаемое расчетное напряжение по формуле (3.10) [1,c.35]:

(3.3)

;

МПа.

Определяем межосевое расстояние передачи по формуле (3.7) [1,c.32]:

(3.4)

где Ка – числовой коэффициент;

КHβ – коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца;

— коэффициент ширины;

Т2 – вращающий момент на колесе (по схеме привода Т2 =Т3 )

Выбираем коэффициенты:

Ка =43 [1,c.32];

КHβ =1,1 [1,c.32, табл.3.1];

=0,315 назначаем по ГОСТ2185-66 с учетом рекомендаций [1,c.36];

Т2 =Т3 =218,69Нм.

Подставив значения в формулу (3.4) получим:

; мм;

Принимаем окончательно по ГОСТ2185-66 [1,c.36]

мм.

Определяем модуль [1,c.36]:

(3.5)

;

;

Принимаем по ГОСТ9563-60 модуль mn =2,0мм [1,c.36]

Определяем суммарное число зубьев по формуле (3.12) [1,c.36]:

(3.6)

Принимаем предварительно β=12º (β=8º…12º), тогда cosβ=0,978

; ;

Принимаем зуба.

Определяем число зубьев шестерни и колеса по формулам (3.13) [1,c.37]:

;

; ; ;

;

; .

Уточняем фактическое передаточное число

;

;

Определяем отклонение передаточного числа от номинального

; .

Допускается ∆U=±3%

Уточняем угол наклона зубьев по формуле (3.16) [1,c.37]:

(3.7)

; ; .

Определяем делительные диаметры шестерни и колеса по формуле (3.17) [1,c.37]:

(3.8)

; мм;

; мм.

Проверяем межосевое расстояние

(3.9)

; мм.

Определяем остальные геометрические параметры шестерни и колеса

; ;

; ; (3.10)

; (3.11)

мм;

; мм;

; мм;

; мм;

; мм;

; мм;

; мм

; мм;

; мм;

; мм.

Проверяем соблюдение условия (т.к. Ψba <0,4)

;

; ;

0,315>0,223

Значит, условие выполняется.

Определяем окружные скорости колес

; м/с;

;

; м/с;

м/с.

Назначаем точность изготовления зубчатых колес – 8В [1,c.32].

Определяем фактическое контактное напряжение по формуле (3.6) [1,c.31]

(3.12)

где КН – коэффициент нагрузки:

КН =КНά × КНβ × КНu ;

КНά – коэффициент, учитывающий неравномерность распределения нагрузки между зубьями;

КНβ — коэффициент, учитывающий неравномерность распределения нагрузки по ширине;

КНu — коэффициент, учитывающий динамическую нагрузку в зацеплении.

Уточняем коэффициент нагрузки

КНά =1,09; [1,c.39, табл.3.4]

КНu =1; [1,c.40, табл.3.6]

; ; ,

тогда КНβ =1,2; [1,c.39, табл.3.7]

КН =1,09×1,2×1; КН =1,308.

Сделав подстановку в формулу (3.12) получим

;

МПа.

Определяем ∆σН

;

; недогрузки,

что допускается.

Определяем силы в зацеплении

— окружная

; (3.13)

; Н;


— радиальная

; (3.14)

; Н;

— осевую

; (3.15)

; Н.

Практика показывает, что у зубчатых колес с НВ<350 выносливость на изгиб обеспечивается с большим запасом, поэтому проверочный расчет на выносливость при изгибе не выполняем.

Все вычисленные параметры заносим в табл.2.

Таблица 2

Параметры закрытой зубчатой передачи

Параметр Шестерня Колесо
mn, мм 2
βº 10º16’
ha, мм 2
ht, мм 2,5
h, мм 4,5
с, мм 0,5
d, мм 63 187
dа, мм 67 191
df, мм 58 182
b, мм 44 40
аW, мм 125
v, м/с 1,59 1,58
Ft, Н 2431
Fr, Н 899,3
Fа, Н 163,7

4 Расчет тихоходного вала редуктора

4.1 Исходные данные

Исходные данные выбираем из табл.1 и табл.2 с округлением до целых чисел:

Н;

Н;

Н.

;

Н;

Т3 =219Н;

d=187мм;

b=40мм.

По кинематическое схеме привода составляем схему усилий, действующих на валы редуктора. Для этого мысленно расцепим шестерню и колесо редуктора. По закону равенства действия и противодействия :

Fa1 = Fa2 = Fa ;

Ft1 = Ft2 = Ft ;

Fr1 = Fr2 = Fr .

Схема усилий приведена на рис.3.

Рис.3 Схема усилий, действующих на валы редуктора

4.2 Выбор материала вала

Назначаем материал вала. Принимаем сталь 45 с пределом прочности σв = 700МПа

[1,c.34, табл.3.3].

Определяем пределы выносливости материала вала присимметричном цикле изгиба и кручения

[1,c.162]

[1,c.164]

; МПа;

; .

4.3 Определение диаметров вала

Определяем диаметр выходного конца вала под полумуфтой израсчёта на чистое кручение

(4.1)

где [τк ]=(20…40)Мпа [1,c.161]

Принимаем [τк ]=30Мпа.

; мм.

Согласовываем dв с диаметром муфты упругой втулочной пальцевой МУВП, для этого определяем расчетный момент, передаваемый муфтой

Тр3 =Т3 ×К (4.2)


где К – коэффициент, учитывающий условия эксплуатации привода.

К=1,3…1,5 [1,c.272, табл.11.3]

Принимаем К=1,5

Подставляя в формулу (4.2) находим:

Тр3 =219×1,5;

Тр3 =328,5Нм.

Необходимо соблюдать условие

Тр3 <[T] (4.3)

где [Т] – допускаемый момент, передаваемый муфтой.

В нашем случае необходимо принять [Т] 500Ни [1,c.277, табл.11.5]

Тогда принимаем окончательно

dм2 =40мм;

lм2 =82мм. (Длина полумуфты) Тип 1, исполнение 2.

Проверяем возможность соединения валов стандартной муфтой

;

; мм.

Так как соединение валов стандартной муфтой возможно.

Принимаем окончательно с учетом стандартного ряда размеров Rа 40:

мм.

Намечаем приближенную конструкцию ведомого вала редуктора (рис.4), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.

Рис.4 Приближенная конструкция ведомого вала

мм;

мм – диаметр под уплотнение;

мм – диаметр под подшипник;

мм – диаметр под колесо.

4.4 Эскизная компоновка ведомого вала

Назначаем предварительно подшипники шариковые радиальные однорядные средней серии по мм подшипник №308, у которого Dп =90мм; Вп =23мм [1,c.394, табл.П3].

Выполняем эскизную компоновку вала редуктора. Необходимо определить длину вала L и расстояния от середины подшипников до точек приложения нагрузок a, b и с (рис.5).

Рис.5 Эскизная компоновка ведомого вала

е=(8…12)мм – расстояние от торца подшипника до внутренней стенки корпуса редуктора;

К=(10-15)мм – расстояние от внутренней стенки корпуса до торца зубчатого колеса.

Принимаем

lст =b+10мм – длина ступицы колеса:

lст =40+10=50мм;

(30…50)мм — расстояние от торца подшипника до торца полумуфты.

Принимаем 40мм.

Определяем размеры а, b, с и L.

а=b=Вп/2+е+К+lст/2;

а=b=23/2+10+11+50/2;

а=b=57,5мм

Принимаем а=b=58мм.

с= Вп/2+40+lм/2;

с=23/2+40+82/2;

с=93,5мм

Принимаем с=94мм.

L=Вп/2+a+b+c+ lм/2;

L=23/2+58+58+94+82/2;

L=262,5мм;

Принимаем L=280мм.

4.5 Расчет ведомого вала на изгиб с кручением.

Заменяем вал балкой на опорах в местах подшипников.

Рассматриваем вертикальную плоскость (ось у)

Изгибающий момент от осевой силы Fа будет:

mа =[Fa×d/2]:

mа =164·187×10-3 /2;

mа =30,7Н×м.

Определяем реакции в подшипниках в вертикальной плоскости.

1åmАу =0

-RBy ·(a+b)+Fr ·a- mа =0

RBy =(Fr ·а- mа )/ (a+b);

RBy = (899·0,058-30,7)/ 0,116;

RBy ==184,8Н

Принимаем RBy =185Н

2åmВу =0

RАy ·(a+b)-Fr ·b- mа =0

RАy ==(Fr ·b+ mа )/ (a+b);

RАy =(899·0,058+30,7)/ 0,116;

RАy =714,15Н

Принимаем RАy =714Н

Проверка:

åFКу =0

RАy — Fr + RBy =714-899+185=0

Назначаем характерные точки 1,2,2’,3 и 4 и определяем в них изгибающие моменты:

М1у =0;

М2у = RАy ·а;

М2у =714·0,058;

М2у =41,4Нм;

М2’у = М2у — mа (слева);

М2’у =41,4-30,7;

М2’у =10,7Нм;

М3у =0;

М4у =0;

Строим эпюру изгибающих моментов Му, Нм (рис.6)

Рассматриваем горизонтальную плоскость (ось х)

1åmАх =0;

Рис.6 Эпюры изгибающих и крутящих моментов ведомого вала.

FМ ·(a+b+с)-RВх ·(a+b)- Ft ·a=0;

972·(0,058+0,058+0,094)-RВх ·(0,058+0,058)-2431·0,058=0;

RВх =(204.12-141)/0,116;

RВх =544,13Н

RВх »544Н

2åmВх =0;

-RАх ·(a+b)+Ft ·b+Fм ·с= 0;

RАх =(2431×0,058+972×0,094)/0,116;

RАх =2003,15Н

RАх »2003Н

Проверка

åmКх =0;

-RАх + Ft — Fм +RВх =-2003+2431-972+544=0

Назначаем характерные точки 1,2,2’,3 и 4 и определяем в них изгибающие моменты:

М1х =0;

М2х = -RАх ·а;

М2х =-2003·0,058:

М2х =-116,2Нм;

М3х =- Fм ·с;

М3х =-972·0,094;

М3х =-8,65Нм

М4х =0;

Строим эпюру изгибающих моментов Мх .

Крутящий момент

ТI-I =0;

ТII-II =T1 =Ft ·d/2;

ТII-II =2431×187×10-3 /2;

ТII-II =227,3Нм

5 Расчет быстроходного вала редуктора

5.1 Исходные данные

Исходные данные выбираем из табл.1 и табл.2 с округлением до целых чисел:

Н;

Н;

Н.

;

Н;

Т3 =212,2Н;

d=63мм;

b=44мм.

Схема усилий, действующих на валы редуктора приведена на рис.3.

5.2 Выбор материала вала

Назначаем материал вала. Принимаем сталь 45 с пределом прочности σв = 700МПа

[1,c.34, табл.3.3].

Определяем пределы выносливости материала вала присимметричном цикле изгиба и кручения

[1,c.162]

[1,c.164]

; МПа;

; .

5.3 Определение диаметров вала

Определяем диаметр выходного конца вала под полумуфтой израсчёта на чистое кручение по формуле (4.1):

; мм.

Согласовываем dв с диаметром муфты упругой втулочной пальцевой МУВП, для этого определяем расчетный момент, передаваемый муфтой по формуле (4.2):

Тр3 =Т3 ×К

где К – коэффициент, учитывающий условия эксплуатации привода.

К=1,3…1,5 [1,c.272, табл.11.3]

Принимаем К=1,5

Подставляя в формулу (4.2) находим:

Тр3 =219×1,5;

Тр3 =328,5Нм.

Необходимо соблюдать условие (4.3)

Тр3 <[T]

где [Т] – допускаемый момент, передаваемый муфтой.

В нашем случае необходимо принять [Т] 500Ни [1,c.277, табл.11.5]

Тогда принимаем окончательно

dм2 =40мм;

lм2 =82мм. (Длина полумуфты) Тип 1, исполнение 2.

Проверяем возможность соединения валов стандартной муфтой

;

; мм.

Так как соединение валов стандартной муфтой возможно.

Принимаем окончательно с учетом стандартного ряда размеров Rа 40:

мм.

Намечаем приближенную конструкцию ведомого вала редуктора (рис.7), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм.

Рис.7 Приближенная конструкция ведущего вала

мм;

мм – диаметр под уплотнение;

мм – диаметр под подшипник;

мм – диаметр под колесо.

5.4 Определение возможности изготовления вала-шестерни

Определяем размер х (рис.8)

(5.1)


Рис.8 Схема для определения размера х

По ГОСТ23360-78 для диаметра 45мм предварительно выбираем шпонку сечением b×h=14×9мм. Подставив в формулу (5.1) значения получим

; мм,

так как размер получился отрицательный, значит изготовление вала и шестерни отдельно невозможно. Определяем размеры вала-шестерни (рис.9).

Рис.9 Приближенная конструкция вала-шестерни

мм;

мм – диаметр под уплотнение;

мм – диаметр под подшипник;

мм – диаметр технологического перехода;

мм – диаметр впадин зубьев;

мм – диаметр вершин зубьев;

мм – делительный диаметр.

5.5 Эскизная компоновка вала-шестерни

Назначаем предварительно подшипники шариковые радиальные однорядные средней серии по мм подшипник №308, у которого Dп =90мм; Вп =23мм [1,c.394, табл.П3].

Выполняем эскизную компоновку вала редуктора. Необходимо определить длину вала L и расстояния от середины подшипников до точек приложения нагрузок a, b и с (рис.10).

l=(0,8…1)×dа – расстояние между серединами подшипников;

l=(0,8…1)×67; принимаем l=60мм;

а=b=l/2;

а=b=30мм;

(30…50)мм — расстояние от торца подшипника до торца полумуфты.

Принимаем 40мм.

с= Вп/2+40+lм/2;

с=23/2+40+82/2;

с=93,5мм

Принимаем с=94мм.

L=Вп/2+a+b+c+ lм/2;

L=23/2+30+30+94+82/2;

L=206,5мм;

Принимаем L=210мм.

Рис.10 Эскизная компоновка вала-шестерни

5.6 Расчет вала-шестерни на изгиб с кручением.

Заменяем вал балкой на опорах в местах подшипников.

Рассматриваем вертикальную плоскость (ось у)

Изгибающий момент от осевой силы Fа будет:

mа =[Fa×d/2]:

mа =164·63×10-3 /2;

mа =5,2Н×м.

Определяем реакции в подшипниках в вертикальной плоскости.

1åmАу =0

-RBy ·(a+b)+Fr ·a- mа =0

RBy =(Fr ·а- mа )/ (a+b);

RBy = (899·0,03-5,2)/ 0,06;

RBy ==362,8Н

Принимаем RBy =363Н

2åmВу =0

RАy ·(a+b)-Fr ·b- mа =0

RАy ==(Fr ·b+ mа )/ (a+b);

RАy =(899·0,03+5,2)/ 0,06;

RАy =536,16Н

Принимаем RАy =536Н

Проверка:

åFКу =0

RАy — Fr + RBy =536-899+363=0

Назначаем характерные точки 1,2,2’,3 и 4 и определяем в них изгибающие моменты:

М1у =0;

М2у = RАy ·а;

М2у =536·0,03;

М2у =16,1Нм;

М2’у = М2у — mа (слева);

М2’у =16,1-5,2;

М2’у =10,9Нм;

М3у =0;

М4у =0;

Строим эпюру изгибающих моментов Му, Нм (рис.11)

Рассматриваем горизонтальную плоскость (ось х)

1åmАх =0;

FМ ·(a+b+с)-RВх ·(a+b)- Ft ·a=0;

972·(0,03+0,03+0,094)-RВх ·(0,03+0,03)-2431·0,03=0;

RВх =(149,7-72,9)/0,06;

RВх =1279,3Н

RВх »1279Н

2åmВх =0;

-RАх ·(a+b)+Ft ·b+Fм ·с= 0;

RАх =(2431×0,03+972×0,094)/0,06;

RАх =2738,3Н

RАх »2738Н

Проверка

åmКх =0;

-RАх + Ft — Fм +RВх =-2738+2431-972+1279=0

Назначаем характерные точки 1,2,2ё’,3 и 4 и определяем в них изгибающие моменты:

М1х =0;

М2х = -RАх ·а;

М2х =-2738·0,03:

Рис.11 Эпюры изгибающих и крутящих моментов вала-шестерни

М2х =-82,2Нм;

М3х =- Fм ·с; М3х =-972·0,094; М3х =-8,65Нм

М4х =0;

Строим эпюру изгибающих моментов Мх .

Крутящий момент

ТI-I =0;

ТII-II =T1 =Ft ·d/2; ТII-II =2431×63×10-3 /2; ТII-II =76,6Нм


6 Подбор подшипников быстроходного вала

Исходные данные

n2 =nII =481,5мин-1 ;

dп2 =40мм;

RАy =536Н;

RАх =2738Н;

RBy =363Н;

RВх =1279Н;

Н.

Определяем радиальные нагрузки, действующие на подшипники

;

;

Здесь подшипник 2 – это опора А в сторону которой действует осевая сила Fа (см. рис.11).

;

;

Назначаем тип подшипника, определив отношение осевой силы к радиальной силе того подшипника, который ее воспринимает (здесь подшипник 2)

;

;

Так как соотношение меньше 0,35, то назначаем шариковый радиальный однорядный подшипник легкой серии по dп2 =40мм [1,c.217, табл.9.22].

Подшипник № 208, у которого:

Dn1 =80мм;

Вn1 =18мм;

С0=17,8кН – статическая грузоподъемность;

С=32кН – динамическая грузоподъемность. [1,c.393, табл.П3].

Определяем коэффициент осевого нагружения по отношению .

; ;

При е=0,19 [1,c.212, табл.9.18].

Так как меньших значений отношения нет ориентировочно считаем е=0,15

Проверяем выполнение неравенства

;

где V – коэффициент вращения, при вращении внутреннего кольца V=1.

.

Определяем номинальную долговечность подшипников в часах

[1,c.211]; (6.1)

Fэ =V×Fr2 ×Kd ×Kτ; [1,c.212];

где Kd — коэффициент безопасности;

Kd =1,3…1,5 [1,c.214, табл.9.19];

принимаем Kd =1,5;

Kτ – температурный коэффициент;

Kτ =1 (до 100ºС) [1,c.214, табл.9.20];

Fэ =1×2790×1,5×1; Fэ =4185Н=4,185кН.

Подставляем в формулу (6.1):

; ч.

По условию срок службы редуктора – 4 года в две смены. Исходя из того, что в году 260 рабочих дней имеем:

Lзад =260×8×2×4; Lзад =16640ч:

Lзад >Lh .

Необходимо выбрать подшипник средней серии по dп2 =40мм [1,c.217, табл.9.22].

Подшипник № 308, у которого:

Dn1 =90мм;

Вn1 =23мм;

С0=22,4кН – статическая грузоподъемность;

С=41кН – динамическая грузоподъемность.

Подставляем в формулу (6.1):

; ч.

Сейчас условие Lзад <Lh выполняется.


7 Подбор подшипников тихоходного вала

Исходные данные

n3 =nIII =160,5мин-1 ;

dп3 =40мм;

RАy =714Н;

RАх =2003Н;

RBy =185Н;

RВх =544Н;

Н.

Определяем радиальные нагрузки, действующие на подшипники

;

;

Здесь подшипник 2 – это опора А в сторону которой действует осевая сила Fа (см. рис.6).

;

;

Назначаем тип подшипника, определив отношение осевой силы к радиальной силе того подшипника, который ее воспринимает (здесь подшипник 2)

;

;

Так как соотношение меньше 0,35, то назначаем шариковый радиальный однорядный подшипник легкой серии по dп3 =40мм [1,c.217, табл.9.22].

Подшипник № 208, у которого:

Dn2 =80мм;

Вn2 =18мм;

С0=17,8кН – статическая грузоподъемность;

С=32кН – динамическая грузоподъемность. [1,c.393, табл.П3].

Определяем коэффициент осевого нагружения по отношению .

; ;

При е=0,19 [1,c.212, табл.9.18].

Так как меньших значений отношения нет ориентировочно считаем е=0,15

Проверяем выполнение неравенства

;

где V – коэффициент вращения, при вращении внутреннего кольца V=1.

.

Определяем номинальную долговечность подшипников в часах

[1,c.211]; (6.1)

Fэ =V×Fr2 ×Kd ×Kτ; [1,c.212];

где Kd — коэффициент безопасности;

Kd =1,3…1,5 [1,c.214, табл.9.19];

принимаем Kd =1,5;

Kτ – температурный коэффициент;

Kτ =1 (до 100ºС) [1,c.214, табл.9.20];

Fэ =1×2126×1,5×1; Fэ =3189Н=3,189кН.

Подставляем в формулу (6.1):

; ч.

Условие Lзад <Lh выполняется.


8 Подбор и проверочный расчет шпонки быстроходного вала

Выбор и проверочный расчет шпоночных соединений проводим по [4].

Рис.12 Сечение вала по шпонке

Для выходного конца быстроходного вала при d=34 мм подбираем призматическую шпонку со скругленными торцами bxh=10x8 мм2 при t=5мм (рис.12).

При длине ступицы муфты lМ =82 мм выбираем длину шпонки l=70мм.


Материал шпонки – сталь 45 нормализованная. Напряжения смятия и

условия прочности определяем по формуле:

где Т – передаваемый момент, Н×мм; ТII =76,7Н

lр – рабочая длина шпонки, при скругленных концах lр =l-b, мм;

[s]см – допускаемое напряжение смятия.

С учетом того, что на выходном конце быстроходного вала устанавливается полумуфта из ст.3 ([s]см =110…190 Н/мм2 ) вычисляем:


Условие выполняется.

9 Подбор и проверочный расчет шпонок тихоходного вала

Для выходного конца тихоходного вала при d=34 мм подбираем призматическую шпонку со скругленными торцами bxh=10x8 мм2 при t=5мм. ТII =218,7Н

При длине ступицы муфты lМ =82 мм выбираем длину шпонки l=70мм.

С учетом того, что на выходном конце быстроходного вала устанавливается полумуфта из ст.3 ([s]см =110…190 Н/мм2 ) и ТIII =218,7Н вычисляем:


Условие выполняется.

Для соединения тихоходного вала со ступицей зубчатого колеса при d=45 мм подбираем призматическую шпонку со скругленными торцами bxh=14x9 мм2 при t=5,5мм. При lст =50 мм выбираем длину шпонки l=40мм.

Материал шпонки – сталь 45 нормализованная. Проверяем напряжения смятия и условия прочности с учетом материала ступицы чугуна СЧ20 ([s]см =70…100 МПа) и ТIII =218,7Н:


Условие выполняется.

Выбранные данные сведены в табл.3.

Таблица 3

Параметры шпонок и шпоночных соединений

Параметр Вал-шестерня — полумуфта Вал-полумуфта Вал-колесо
Ширина шпонки b, мм 10 10 14
Высота шпонки h, мм 8 8 9
Длина шпонки l, мм 70 70 40
Глубина паза на валу t, мм 5 5 5,5
Глубина паза во втулке t1, мм 3,3 3,3 3,8

10 Выбор системы и вида смазки.

Скорость скольжения в зацеплении VS = 1.59 м/с. Контактные напряжения sН = 482,7 Н/мм2. По таблице 10.29 из [3] выбираем масло И-Т-Д-680.

Используем картерную систему смазывания. В корпус редуктора заливаем масло так, чтобы венец зубчатого колеса был в него погружен на глубину hм (рис.12):

Рис.13 Схема определения уровня масла в редукторе

hм max £ 0.25d2 = 0.25×183 = 46мм;

hм min = 2×m = 2×2 = 4мм.

При вращении колеса масло будет увлекаться его зубьями, разбрызгиваться, попадать на внутренние стенки корпуса, откуда стекать в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которым покрываются поверхности расположенных внутри корпуса деталей, в том числе и подшипники.

Объем масляной ванны

V = 0.65×PII = 0.65×3,866 = 2.5 л.

Контроль уровня масла производится пробками уровня, которые ставятся попарно в зоне верхнего и нижнего уровней смазки. Для слива масла предусмотрена сливная пробка. Заливка масла в редуктор производится через съемную крышку.

И для вала-шестерни, и для зубчатого колеса выберем манжетные уплотнения по ГОСТ 8752-79. Установим их рабочей кромкой внутрь корпуса так, чтобы обеспечить к ней хороший доступ масла.


11 Сборка редуктора

Для редуктора принимаем горизонтальную конструкцию разъемного корпуса, изготовленного литьем из серого чугуна СЧ15. Устанавливаем зубчатую пару с подшипниками. Для предотвращения задевания поверхностей вращающихся колес за внутренние стенки корпуса внутренний контур стенок провести с зазором х=8…10мм [3]; такой же зазор предусмотреть между подшипниками и контуром стенок. Расстояние между дном корпуса и поверхностью колес принимаем у³4х; у³(32…40)мм

Для малонагруженных редукторов (Т2 £500Нм) определяем толщины стенок крышки и основания корпуса

; мм, принимаем мм.

Для крепления крышек подшипников в корпусе и крышке предусматриваем фланцы. Крышки торцовые для подшипников выбираем по табл.143 (глухие) и 144 (с отверстием для манжетного уплотнения) [2, т.2, с.255].

Для быстроходного вала:

крышка торцовая глухая типа 2 исполнения 2 диаметром D=90мм ГОСТ18511-73;

крышка торцовая с отверстием для манжетного уплотнения типа 1 исполнения 2 диаметром D=90мм ГОСТ18512-73.

Для тихоходного вала:

крышка торцовая глухая типа 2 исполнения 2 диаметром D=80мм ГОСТ18511-73;

крышка торцовая с отверстием для манжетного уплотнения типа 1 исполнения 2 диаметром D=80мм ГОСТ18512-73.

Прорисовываем корпус и крышку редуктора с учетом рекомендаций [3.с.219].

Устанавливаем верхнюю крышку на винты и закручиваем пробки.

Список использованной литературы

1. С.А. Чернавский и др. «Курсовое проектирование деталей машин» М. 1987г.

2. Анурьев В.И. Справочник конструктора-машиностроителя: В 3 т. -8-е изд. перераб. и доп. Под ред. И.Н. Жестковой. – М.: Машиностроение, 1999

3. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. пособие. – М.: Высш. шк., 1991

4. Чернин И.М. и др. Расчеты деталей машин. – Мн.: Выш. школа, 1978

еще рефераты
Еще работы по промышленности, производству