Реферат: Проектирование электропривода тепловизионной системы сопровождения

--PAGE_BREAK--На курсовой дальности Dк=500 м максимум мощности наблюдается при р=0,5 км (рис. 3) и составляет 7,6 Вт
<img width=«76» height=«165» src=«dopb148475.zip» v:shapes="_x0000_s1125 _x0000_s1126 _x0000_s1127 _x0000_s1128">  <shape id="_x0000_i1070" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image106.emz» o:><img width=«585» height=«406» src=«dopb148477.zip» v:shapes="_x0000_i1070">\s
Рис. 3. — График потребной мощности горизонтального канала на <shape id="_x0000_i1071" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image108.wmz» o:><img width=«79» height=«23» src=«dopb148478.zip» v:shapes="_x0000_i1071"> для всех параметров <shape id="_x0000_i1072" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image055.wmz» o:><img width=«22» height=«21» src=«dopb148479.zip» v:shapes="_x0000_i1072">.
Мощность, развиваемая ИД, затрачивается не только на преодоления моментов сопротивления и момента инерции нагрузки, но и собственных моментов ИМ, поэтому исполнительный двигатель должен быть выбран с запасом по мощности. Обеспечение высокой характеристики плавности требует выбора двигателя с запасом по мощности не более 10 раз.
В качестве исполнительного элемента могут применяться двигатели постоянного тока, переменного тока, электромагнитные муфты с приводным двигателем. В результате анализа аппаратного состава, динамики электрических массовых характеристик, надежности и технологичности выявляются мощностные диапазоны преимущественного применения того или иного типа исполнительного элемента. В диапазоне мощностей до 500 Вт электропривод постоянного тока развивает большие ускорения, позволяющие сформировать широкополосный контур управления. Малые ошибки и высокая добротность, применение эффективных схем нелинейного управления позволяют обеспечивать высокую точность и плавность слежения.
Главным преимуществом двигателей постоянного тока с независимым и магнитоэлектрическим возбуждением является линейность их механических и регулировочных характеристик, что наряду с хорошими энергетическими характеристиками стало причиной их широкого распространения в качестве исполнительных элементов следящих систем.
Наилучшими характеристиками среди двигателей постоянного тока считают малоинерционные электродвигатели с возбуждением от постоянных магнитов и гладким якорем (серии ДПР, ДПМ, ДП, ЭДМ, МИГ), но они используют в своей конструкции дефицитные редкоземельные металлы и имеют высокую стоимость. В качестве исполнительного элемента привода был выбран двигатель постоянного тока ДП 60-90-6-Р10, реверсивный, малоинерционный, постоянного тока, малой мощности с гладким якорем, возбуждающий от постоянных магнитов, предназначен для приводов следящих систем.
В качестве датчика скорости двигателя будем использовать тахогенератор постоянного тока, установленный непосредственно на валу исполнительного двигателя. Тип тахогенератора определяется типом исполнительного двигателя. Он должен обладать наибольшей крутизной, что обеспечивает преодоление зашумлённости измеряемого сигнала на малых скоростях движения, малыми статическими и инерционными моментами, наибольшим ресурсом. Указанным требованиям удовлетворяет тахогенератор постоянного тока 2,5ТГП–6, имеющий следующие паспортные характеристики:
Примем:
Момент трения редуктора
<shape id="_x0000_i1087" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image137.wmz» o:><img width=«127» height=«23» src=«dopb148493.zip» v:shapes="_x0000_i1087">
Момент инерции редуктора
<shape id="_x0000_i1088" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image139.wmz» o:><img width=«137» height=«24» src=«dopb148494.zip» v:shapes="_x0000_i1088">
1.3 Выбор передаточного числа редуктора. Определение располагаемых кинематических характеристик. В целях наиболее полного использования ИД, выбор передаточного числа редуктора осуществляется в точке соответствующего максимума располагаемого ускорения, при этом учитывается взаимное расположение графиков, располагаемых и потребных кинематических параметров.
При расчете располагаемых кинематических характеристик учтем негр создаваемые исполнительным механизмом.
<shape id="_x0000_i1089" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image141.wmz» o:><img width=«276» height=«37» src=«dopb148495.zip» v:shapes="_x0000_i1089">                                                 (14)
<shape id="_x0000_i1090" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image143.wmz» o:><img width=«127» height=«36» src=«dopb148496.zip» v:shapes="_x0000_i1090">                                                                                 (15)
<shape id="_x0000_i1091" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image145.wmz» o:><img width=«50» height=«36» src=«dopb148497.zip» v:shapes="_x0000_i1091"> - номинальный момент двигателя
<shape id="_x0000_i1092" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image147.wmz» o:><img width=«51» height=«35» src=«dopb148498.zip» v:shapes="_x0000_i1092">,<shape id="_x0000_i1093" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image149.wmz» o:><img width=«33» height=«33» src=«dopb148499.zip» v:shapes="_x0000_i1093"> - суммарный момент трения и инерции исполнительного механизма
<shape id="_x0000_i1094" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image151.wmz» o:><img width=«134» height=«44» src=«dopb148500.zip» v:shapes="_x0000_i1094">                                                                                  (16)
<shape id="_x0000_i1095" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image153.wmz» o:><img width=«13» height=«17» src=«dopb148501.zip» v:shapes="_x0000_i1095"> - передаточное число редуктора;
<shape id="_x0000_i1096" type="#_x0000_t75" o:ole="" o:bullet=«t»><imagedata src=«32070.files/image155.wmz» o:><img width=«44» height=«19» src=«dopb148502.zip» alt="*" v:shapes="_x0000_i1096"> - номинальное значение угловой скорости двигателя
<shape id="_x0000_i1097" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image157.wmz» o:><img width=«301» height=«65» src=«dopb148503.zip» v:shapes="_x0000_i1097">                                             (17)
<shape id="_x0000_i1098" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image159.wmz» o:><img width=«89» height=«35» src=«dopb148504.zip» v:shapes="_x0000_i1098"> - КПД редуктора с прямозубыми цилиндрическими передачами
<img width=«71» height=«77» src=«dopb148505.zip» v:shapes="_x0000_s1130 _x0000_s1131 _x0000_s1132 _x0000_s1133"><img width=«67» height=«77» src=«dopb148506.zip» v:shapes="_x0000_s1134 _x0000_s1135 _x0000_s1136 _x0000_s1137"><img width=«67» height=«77» src=«dopb148507.zip» v:shapes="_x0000_s1138 _x0000_s1139 _x0000_s1140 _x0000_s1141"><img width=«64» height=«79» src=«dopb148508.zip» v:shapes="_x0000_s1142 _x0000_s1143 _x0000_s1144 _x0000_s1145">  <img width=«12» height=«51» src=«dopb148510.zip» v:shapes="_x0000_s1147"><img width=«12» height=«51» src=«dopb148510.zip» v:shapes="_x0000_s1148">  <img width=«51» height=«12» src=«dopb148512.zip» v:shapes="_x0000_s1150">  <shape id="_x0000_i1099" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image171.emz» o:><img width=«569» height=«502» src=«dopb148513.zip» v:shapes="_x0000_i1099">\s
1 — располагаемое ускорение (<shape id="_x0000_i1100" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image173.wmz» o:><img width=«33» height=«25» src=«dopb148514.zip» v:shapes="_x0000_i1100">)
2 — располагаемая скорость (<shape id="_x0000_i1101" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image175.wmz» o:><img width=«39» height=«25» src=«dopb148515.zip» v:shapes="_x0000_i1101">)
3 — потребное ускорение (<shape id="_x0000_i1102" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image177.wmz» o:><img width=«35» height=«25» src=«dopb148516.zip» v:shapes="_x0000_i1102">)
4 — потребная скорость (<shape id="_x0000_i1103" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image179.wmz» o:><img width=«40» height=«25» src=«dopb148517.zip» v:shapes="_x0000_i1103">)
Рис. 5. — Определение передаточного числа редуктора.
<shape id="_x0000_i1104" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image181.wmz» o:><img width=«216» height=«63» src=«dopb148518.zip» v:shapes="_x0000_i1104">                                                                    (18)
<shape id="_x0000_i1105" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image183.wmz» o:><img width=«249» height=«38» src=«dopb148519.zip» v:shapes="_x0000_i1105">                                                            (19)
Передаточное число редуктора выберем равным 2850. При этом <shape id="_x0000_i1106" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image185.wmz» o:><img width=«156» height=«41» src=«dopb148520.zip» v:shapes="_x0000_i1106">, <shape id="_x0000_i1107" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image187.wmz» o:><img width=«155» height=«41» src=«dopb148521.zip» v:shapes="_x0000_i1107">
Проверка исполнительного двигателя по скорости, моменту, мощности.
По скорости — <shape id="_x0000_i1108" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image189.wmz» o:><img width=«303» height=«45» src=«dopb148522.zip» v:shapes="_x0000_i1108">   (верно)
По развиваемому моменту — <shape id="_x0000_i1109" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image191.wmz» o:><img width=«119» height=«26» src=«dopb148523.zip» v:shapes="_x0000_i1109">, <shape id="_x0000_i1110" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image193.wmz» o:><img width=«148» height=«21» src=«dopb148524.zip» v:shapes="_x0000_i1110"> (верно)
По мощности — <shape id="_x0000_i1111" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image195.wmz» o:><img width=«323» height=«55» src=«dopb148525.zip» v:shapes="_x0000_i1111">
90 Вт>19,38 Вт(верно)
1.4 Расчет зон сопровождения цели. Пространственная область применения следящего привода может быть оценена путем построения зон предельных скоростей и ускорений привода. Пространство внутри зоны является запретным.
Наглядное представление о зоне даёт изометрическая проекция, построенная в трёхмерном координатном пространстве (<shape id="_x0000_i1112" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image197.wmz» o:><img width=«61» height=«21» src=«dopb148526.zip» v:shapes="_x0000_i1112">), но чаще всего строят вертикальные и горизонтальные сечения зон. Вертикальные сечения представляют собой проекцию пространственной зоны на координатную плоскость (<shape id="_x0000_i1113" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image199.wmz» o:><img width=«45» height=«21» src=«dopb148527.zip» v:shapes="_x0000_i1113">), вычисленную в предположении <shape id="_x0000_i1114" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image201.wmz» o:><img width=«193» height=«21» src=«dopb148528.zip» v:shapes="_x0000_i1114">, <shape id="_x0000_i1115" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image203.wmz» o:><img width=«76» height=«19» src=«dopb148529.zip» v:shapes="_x0000_i1115">. Горизонтальные сечения представляют собой проекцию пространственной зоны на координатную плоскость (<shape id="_x0000_i1116" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image205.wmz» o:><img width=«41» height=«21» src=«dopb148530.zip» v:shapes="_x0000_i1116">), вычисленную в предположении <shape id="_x0000_i1117" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image207.wmz» o:><img width=«193» height=«21» src=«dopb148528.zip» v:shapes="_x0000_i1117">, <shape id="_x0000_i1118" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image203.wmz» o:><img width=«76» height=«19» src=«dopb148529.zip» v:shapes="_x0000_i1118">. Диапазоны изменения <shape id="_x0000_i1119" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image208.wmz» o:><img width=«77» height=«21» src=«dopb148531.zip» v:shapes="_x0000_i1119"> задаются техническим заданием.
В качестве предельных значений скоростей и ускорений могут рассматриваться потребные, максимальные располагаемые характеристики, рассчитанные в п.1.3. или другие.
<shape id="_x0000_i1120" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image210.wmz» o:><img width=«99» height=«45» src=«dopb148532.zip» v:shapes="_x0000_i1120">                                                                                                     (20)
<shape id="_x0000_i1121" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image212.wmz» o:><img width=«120» height=«48» src=«dopb148533.zip» v:shapes="_x0000_i1121">                                                                                                 (21)
Горизонтальные сечения зон предельных скоростей представляют собой окружности радиусом <shape id="_x0000_i1122" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image214.wmz» o:><img width=«89» height=«56» src=«dopb148534.zip» v:shapes="_x0000_i1122">и центром смещенным вдоль оси р на величину радиуса окружности (рис. 6).
   

              <imagedata src=«dopb148542.zip» o:><img width=«530» height=«465» src=«dopb148542.zip» v:shapes="_x0000_i1123">
  <img width=«51» height=«12» src=«dopb148512.zip» v:shapes="_x0000_s1160">  

Рис. 6
Горизонтальные сечения зон предельных ускорений представляют собой 4х лепестковую кривую, каждый лепесток которой расположен в одном из квадрантов, симметрично относительно биссектрисы прямого угла (рис. 7).
<img width=«464» height=«2» src=«dopb148544.zip» v:shapes="_x0000_s1162"><img width=«471» height=«345» src=«dopb148545.zip» v:shapes="_x0000_s1163 _x0000_s1164 _x0000_s1165 _x0000_s1166 _x0000_s1167 _x0000_s1168 _x0000_s1169 _x0000_s1170 _x0000_s1171 _x0000_s1172 _x0000_s1173 _x0000_s1174 _x0000_s1175 _x0000_s1176 _x0000_s1177 _x0000_s1178 _x0000_s1179 _x0000_s1180 _x0000_s1181"><shape id="_x0000_i1124" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image234.emz» o:><img width=«527» height=«408» src=«dopb148546.zip» v:shapes="_x0000_i1124">\s
Рис. 7
Для скорости цели 100 м/с зона по скорости: <shape id="_x0000_i1125" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image236.wmz» o:><img width=«68» height=«21» src=«dopb148547.zip» v:shapes="_x0000_i1125"> <shape id="_x0000_i1126" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image238.wmz» o:><img width=«77» height=«19» src=«dopb148548.zip» v:shapes="_x0000_i1126">;
по ускорению: <shape id="_x0000_i1127" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image240.wmz» o:><img width=«59» height=«21» src=«dopb148549.zip» v:shapes="_x0000_i1127"> <shape id="_x0000_i1128" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image242.wmz» o:><img width=«69» height=«19» src=«dopb148550.zip» v:shapes="_x0000_i1128">.
1.5 Расчет параметров матмодели исполнительного двигателя и статических характеристик. Поведение двигателя постоянного тока в динамике описывается системой дифференциальных уравнений, из которых одно является уравнением равновесия напряжения на двигателе, другое — уравнение равновесия моментов.
<shape id="_x0000_i1129" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image244.wmz» o:><img width=«201» height=«41» src=«dopb148551.zip» v:shapes="_x0000_i1129">                                                                               (22)
<shape id="_x0000_i1130" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image246.wmz» o:><img width=«144» height=«44» src=«dopb148552.zip» v:shapes="_x0000_i1130">                                                                                            (23)
Момент двигателя Мдв, является результатом взаимодействия тока, протекающего по обмотке якоря и магнитного потока возбуждения. При постоянной величине потока возбуждения, момент двигателя равен:
<shape id="_x0000_i1131" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image248.wmz» o:><img width=«92» height=«24» src=«dopb148553.zip» v:shapes="_x0000_i1131">                                                                                                       (24)
Се — коэффициент момента, зависит от конструктивных параметров двигателя, величины потока возбуждения:
<shape id="_x0000_i1132" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image250.wmz» o:><img width=«115» height=«41» src=«dopb148554.zip» v:shapes="_x0000_i1132">                                                                                                  (25)
где <shape id="_x0000_i1133" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image252.wmz» o:><img width=«19» height=«19» src=«dopb148555.zip» v:shapes="_x0000_i1133"> - число активных проводников в обмотке якоря,
<shape id="_x0000_i1134" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image055.wmz» o:><img width=«16» height=«17» src=«dopb148452.zip» v:shapes="_x0000_i1134"> - число пар полюсов,
<shape id="_x0000_i1135" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image254.wmz» o:><img width=«21» height=«19» src=«dopb148556.zip» v:shapes="_x0000_i1135"> - число параллельных ветвей,
<shape id="_x0000_i1136" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image256.wmz» o:><img width=«21» height=«24» src=«dopb148557.zip» v:shapes="_x0000_i1136"> - поток возбуждения.
<shape id="_x0000_i1137" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image258.wmz» o:><img width=«85» height=«41» src=«dopb148558.zip» v:shapes="_x0000_i1137">                                                                                                        (26)
При вращении якоря, его обмотка пересекает силовые линии, магнитное поле возбуждения наводит в ней ЭДС направленную в обратную сторону приложенного к якорю напряжения и называется противо ЭДС.
Величина ее определяется угловой скоростью вращения якоря, величиной магнитного потока возбуждения и конструктивными параметрами двигателя, при постоянной величине потока возбуждения
<shape id="_x0000_i1138" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image260.wmz» o:><img width=«72» height=«45» src=«dopb148559.zip» v:shapes="_x0000_i1138">                                                                                                           (27)
Скорость холостого хода двигателя:
<shape id="_x0000_i1139" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image262.wmz» o:><img width=«136» height=«47» src=«dopb148560.zip» v:shapes="_x0000_i1139">                                                                                             (28)
где <shape id="_x0000_i1140" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image264.wmz» o:><img width=«32» height=«25» src=«dopb148561.zip» v:shapes="_x0000_i1140"> - пусковой момент;
<shape id="_x0000_i1141" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image266.wmz» o:><img width=«44» height=«24» src=«dopb148562.zip» v:shapes="_x0000_i1141"> - номинальный момент;
<shape id="_x0000_i1142" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image268.wmz» o:><img width=«41» height=«24» src=«dopb148563.zip» v:shapes="_x0000_i1142"> - номинальная скорость;
Электромеханическая постоянная двигателя с учётом нагрузки:
<shape id="_x0000_i1143" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image270.wmz» o:><img width=«99» height=«45» src=«dopb148564.zip» v:shapes="_x0000_i1143">                                                                                                     (29)
<shape id="_x0000_i1144" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image272.wmz» o:><img width=«193» height=«52» src=«dopb148565.zip» v:shapes="_x0000_i1144">                                                                                 (30)
Расчет параметров матмодели двигателя ДП 60-90-6-Р10
Скорость холостого хода                                                                       <shape id="_x0000_i1145" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image274.wmz» o:><img width=«125» height=«41» src=«dopb148566.zip» v:shapes="_x0000_i1145">
Электромеханическая постоянная времени собственно двигателя   <shape id="_x0000_i1146" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image276.wmz» o:><img width=«111» height=«24» src=«dopb148567.zip» v:shapes="_x0000_i1146">
Электромеханическая постоянная времени с учётом нагрузки          <shape id="_x0000_i1147" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image278.wmz» o:><img width=«103» height=«24» src=«dopb148568.zip» v:shapes="_x0000_i1147">
Коэффициент передачи двигателя по моменту                                    <shape id="_x0000_i1148" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image280.wmz» o:><img width=«115» height=«41» src=«dopb148569.zip» v:shapes="_x0000_i1148">
Коэффициент противо эдс                                                                       <shape id="_x0000_i1149" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image282.wmz» o:><img width=«105» height=«44» src=«dopb148570.zip» v:shapes="_x0000_i1149">
Номинальная электрическая мощность                                                  <shape id="_x0000_i1150" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image284.wmz» o:><img width=«84» height=«24» src=«dopb148571.zip» v:shapes="_x0000_i1150">
Номинальная механическая мощность                                                  <shape id="_x0000_i1151" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image286.wmz» o:><img width=«120» height=«24» src=«dopb148572.zip» v:shapes="_x0000_i1151">
Максимальная механическая мощность                                                <shape id="_x0000_i1152" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image288.wmz» o:><img width=«116» height=«23» src=«dopb148573.zip» v:shapes="_x0000_i1152">
Индуктивность якорной цепи                                                                 <shape id="_x0000_i1153" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image290.wmz» o:><img width=«116» height=«24» src=«dopb148574.zip» v:shapes="_x0000_i1153">
Механические характеристики исполнительного двигателя при различных напряжениях имеют вид (рис. 8).
<img width=«63» height=«77» src=«dopb148575.zip» v:shapes="_x0000_s1182 _x0000_s1183 _x0000_s1184 _x0000_s1185"><img width=«63» height=«77» src=«dopb148576.zip» v:shapes="_x0000_s1186 _x0000_s1187 _x0000_s1188 _x0000_s1189"><img width=«65» height=«77» src=«dopb148577.zip» v:shapes="_x0000_s1190 _x0000_s1191 _x0000_s1192 _x0000_s1193"><img width=«51» height=«12» src=«dopb148512.zip» v:shapes="_x0000_s1194">  <img width=«12» height=«39» src=«dopb148579.zip» v:shapes="_x0000_s1196">  <shape id="_x0000_i1154" type="#_x0000_t75" o:ole=""><imagedata src=«32070.files/image300.emz» o:><img width=«684» height=«550» src=«dopb148581.zip» v:shapes="_x0000_i1154">\s
1 — механическая характеристика исполнительного двигателя при 27 В
2 — механическая характеристика исполнительного двигателя при 24 В
3 — механическая характеристика исполнительного двигателя при 12 В
Рис. 8
1.6 Синтез замкнутого по скорости привода и определение его характеристик 1.6.1 Выбор закона управления. Проектирование привода состоит в выборе усилительных, корректирующих и сглаживающих устройств, обеспечивающих точность, быстродействие, диапазон регулирования, неравномерность хода и т.п.
Совокупность усилительных, корректирующих и сглаживающих устройств образует систему управления привода.
В исполнительных подсистемах АСЦ перспективным является применения трехпозиционных (с логическим управлением) автоколебательных систем управления. В автоколебательных системах не требуется обеспечивать устойчивость “в малом”, поэтому возможна реализация высоких коэффициентов передачи разомкнутого контура, обеспечивающая плавность движения выходного вала исполнительного механизма, которая является одной из важнейших характеристик систем слежения.
Релейные системы имеют ряд преимуществ по сравнению с линейными:
— менее сложная и более экономичная радиоэлектронная аппаратура, основу которой составляет релейный усилитель. Высокий кпд РЭА обеспечивает ключевой режим работы усилительных элементов;
— малые уходы нулей, простота настройки и эксплуатации;
— более высокая помехозащищенность систем;
— возможность линеаризации автоколебаниями нелинейностей типа сухое трение, люфт и др.
— в силу нелинейной зависимости эквивалентного коэффициента усиления релейного усилителя от амплитуды автоколебаний автоколебательная система обладает адаптивными свойствами (параметрическая самонастройка);
— при стремлении зоны неоднозначности релейного элемента к нулю автоколебательная система с исполнительным двигателем постоянного тока сводится к оптимальной по быстродействию, реализующей высокие требования по быстродействию и колебательности переходных процессов.
По сравнению с системами, работающими в режиме ШИМ, автоколебательные системы имеют больший коэффициент усиления разомкнутого контура, т.к. для обеспечения захвата контура вынуждающими колебаниями при работе в режиме широтно-импульсной модуляции необходима амплитуда их примерно в 2 раза больше амплитуды автоколебаний, что приводит к уменьшению эквивалентного коэффициента усиления релейного усилителя.
Положительные свойства автоколебательных систем проявляются, если параметры автоколебаний (амплитуда и частота) не вызывают существенного нагрева двигателя в процессе работы.
При проектирования двухпозиционной автоколебательной системы реализация этого требования приводит к постановки в цепь якоря двигателя дополнительной индуктивности — дросселя увеличивающего электромагнитную постоянную двигателя. Использования трехпозиционного колебательного режима позволяет снизить рабочие токи системы (улучшить, таким образом, тепловой режим) и получить более высокие динамические и меньшие массогабаритные характеристики по сравнению с двухпозиционным режимом. Поэтому трехпозиционный режим несмотря на большую сложность радиоэлектронную аппаратуру является предпочтительным. При выборе параметров автоколебаний будем учитывать диапазон частот управляющего воздействия, частоты упругих автоколебаний двух массовой системы “двигатель-тахогенератор”, возможное увеличение амплитуд автоколебаний по 3 и 5 гармоникам. В трехпозиционном режиме длительность управляющего импульса должна быть меньше 1800но больше 200-300(при этом автоколебания не стабильны), ток якоря не должен превышать номинальные значения. Синтез привода осуществляется в соответствии с алгоритмом, приведенным на рис. 9 В состав структурной схемы электронного усилителя входят:
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по производству