Реферат: Исследование процесса измельчения в бегунах мокрого помола СМ365

Министерство Образования РФ

Белгородский государственный технологический университет им. В.Г. Шухова

Кафедра Механического Оборудования

Расчётно-пояснительная записка к курсовому проекту

по дисциплине: ППСМ

на тему: “Исследование процесса измельчения в бегунах мокрого помола СМ – 365”

Белгород 2010

Содержание

Введение

1. Общие сведения и классификация бегунов

2. Конструкция, принцип действия и описание процессов, происходящих в машине

3. Расчёт основных параметров

4. Проведение экспериментальных исследований зависимости функции от варьируемых параметров

Заключение

Список используемой литературы

Приложение

Введение

Многообразие измельчаемых материалов поих свойствам и преследуемым промышленным целям этого процесса приводит к большому количеству различных конструкций дробильно-помольных машин и установок.

Все применяемые машины для измельчения материалов разделяют на две группы: дробилки и мельницы.

Дробилки — это машины, которые применяются для дробления сравнительно крупных кусков материала, начальный размер 100-1200 мм, размер кусков конечного продукта 250-3 мм. Дробилки применяются в горнодобывающей, горнорудной, строительной, химической и других отраслях промышленности для крупного, среднего и мелкого дробления различных горных пород. Степень измельчения в дробилках находится в пределах 3-20.

Мельницы предназначаются для получения тонко измельченного порошкообразного материала. Они применяются при грубом, тонком и сверхтонком помоле известняка, мела, мрамора, глины, угля, клинкера и других материалов, при этом размер начальных кусков равен 2-20 мм, а размер частиц конечного продукта составляет от 0,1-0,3 мм до долей микрометра.

По конструкции и принципу действия различаются следующие виды дробилок: щековые (дробление происходит между подвижной и неподвижной щеками), конусные (раздавливание материала и частичное его изгибание происходят между двумя конусами), валковые (материал раздавливается между двумя валками, вращающимися навстречу друг другу), бегуны (измельчение материала происходит между вращающимися катками и чашей (подвижной или неподвижной) путем раздавливания и истирания.), дробилки ударного действия.

По сравнению с другими машинами для измельчения материала, например валковыми дробилками, в общем случае бегуны менее эффективны. Поэтому их следует применять только тогда, когда это вызывается специальными технологическими требованиями, когда наряду с измельчением необходимо обеспечить уплотнение, растирание, обезвоздушивание массы (например, при переработке глины).



1. Общие сведения и классификация бегунов

Бегуны применяются для мелкого дробления (конечный размер частиц 3...8 мм) и грубого помола (0,2...0,5 мм) извести, глины и других материалов. Кроме того, бегуны могут также обеспечить растирание, гомогенизацию, уплотнение и обезвоздушивание материала. При производстве строительной керамики бегуны используют для мелкого и тонкого дробления сухой и увлажнённой глины, полевого шпата, фарфорового боя, угля, доломита и других материалов.

Бегуны классифицируют по следующим основным признакам.

По способу действия: периодического и непрерывного действия.

По технологическому назначению: для мокрого, сухого и полусухого измельчения; для измельчения и перемешивания и только перемешивания; для брикетирования сырьевой смеси; с металлическими катками и металлическим подом; с каменными катками и каменным подом.

По конструктивному оформлению: с неподвижной чашей; с вращающейся; с верхним и нижним приводом (при нижнем приводе сложнее разборка, длительнее ремонт, но масса не загрязняется); с катками, опирающимися на материал своей массой илисдополнительным гидравлическим, пневматическим или с пружинным нажатием на катки.

По способу разгрузки: с ручной разгрузкой; продавливанием через подовую решетку; с центробежной разгрузкой; с разгрузкой через периферическую подовую решетку и с разгрузкой по опускающемуся в чашу отвалу. В бегунах с вращающимися катками вокруг вертикальной оси центробежные силы стремятся сорвать катки, а в случае их неуравновешенности вертикальный вал может изогнуться, но центробежные силы при этом не оказывают влияния на материал, находящийся в чаше.

У бегунов с вращающейся чашей более спокойный ход, но центробежные силы отбрасывают материал к периферии, кроме того, у этих бегунов большая нагрузка на упорный подшипник (массы катков и чаши).

Достоинства бегунов по сравнению с валковыми дробилками: можно загружать значительно большие куски материала; проще регулировать тонкость измельчения; улучшаются пластические свойства глиняных материалов из-за многократного воздействия катков. Недостатки бегунов: громоздкость; более сложный ремонт; повышенный удельный расход энергии на единицу массы перерабатываемого материала.

2. Конструкция, принцип действия и описание процессов, происходящих в машине

Бегуны мокрого помола (материал влажностью более 15 %) с вращающимися катками (рис. 1) имеют нижнее расположение привода. При вращении вертикального вала 1 катки 5, установленные на подшипниках на водилах 6, перекатываются по поддону 4 и одновременно вращаются вокруг собственных осей. Коленчатые водила, шарнирно закрепленные в цапфе 7, позволяют каткам подниматься или опускаться в зависимости от толщины слоя материала и преодолевать недробимые предметы. Катки устанавливают на разных радиусах от центра поддона, чтобы они перекрывали большую площадь. Поддон укладывают плитами, имеющими овальные отверстия размером от 6×30 до 12×40 мм. Измельченный материал продавливается сквозь отверстия в поддоне и попадает на вращающуюся тарелку 8, с которой сбрасывается скребком 3 в разгрузочный лоток 2. К валу 1 прикреплены поводки со скребками 9, которые очищают борта и поверхность чаши от налипшего материала и равномерно направляют его под катки.



/>

Рисунок 1

Применяют также верхний привод катков, бегуны с вращающейся чашей, бегуны с пружинным, гидравлическим или пневматическим прижимом катков. Использование последних позволяет снизить металлоемкость машины.

В бегунах массивные катки, перекатываясь по слою материала, находящемуся на поддоне, измельчают его раздавливанием и истиранием. Это происходит вследствие того, что широкие катки, перемещаясь по окружности небольшого радиуса, непрерывно разворачиваются относительно поддона и их внешняя сторона скользит юзом, а внутренняя буксует. В бегунах может осуществляться как сухой, так и мокрый помол материалов. Главным параметром бегунов является диаметрDи ширина bкатков. Для мокрого помола выпускают бегуны с размерамиD х bот 1200 х 300до1800 х 800мм с катками массой, соответственно 2...9 т. Для сухого помола изготавливают бегуны сD х bот600 х 200до1800 х 450 мм.

Бегуны мокрого помола СМ – 365 предназначены для тонкого помола, перемешивания, растирания и увлажнения керамических масс. Чугунное кольцо станины состоит из шести секций, скреплённых болтами. Стальная литая чаша бегунов, укреплённая на станине, имеет форму усечённого конуса, расширяющегося к верху. Отливка чаши выполнена без днища, днищем служат сегментообразные дырчатые плиты, образующие дорожку, по которой перекатываются катки.

Перерабатываемый материал загружается в загрузочную воронку, и далее через течку попадает под каток, раздавливается и истирается. Далее материал продавливается через отверстия решётчатых плит и просыпается под чашу на тарель, с которой сбрасывается на течку для измельчённого материала. Отверстия в дырчатых плитах конические, увеличивающиеся к низу для обеспечения свободного просыпания продавленных в отверстия кусочков материала.

На вертикальном валу бегунов укреплена крестовина с горизонтальными полуосями, на которых вращаются катки. Катки для более эффективного помола снабжены специальными пружинными прижимами. Для регулирования силы прижима катков имеются регулировочные гайки.

Катки бегунов состоят из двух частей: чугунного корпуса и прочно насаженного на него стального бандажа. Бегуны получают движение от электродвигателя через фрикционную муфту, редуктор, горизонтальный приводной вал с конической шестерней. Коническое колесо, входящее в зацепление с шестерней, насажено на вертикальный вал.

Для равномерности загрузки бегуны оснащают вращающейся загрузочной воронкой.

3.Расчёт основных параметров

1) Определение угла захвата.

Углом захвата называют угол, образованный плоскостью чаши и касательными, проведёнными через точки соприкосновения куска материала с поверхностью катка.



/>

Рисунок 2

В момент захвата куска материала в точке А возникает сила нормального давления Р и сила F=P/>f, где f– коэффициент трения (рис.2, схема а).

Возникает также сила противодействия P1и сила трения P1/>f. При равновесии куска имеем:

--PAGE_BREAK--

∑x=0, P/>sinα– P/>f/>cosα— P1/>f=0,

P/>sinα= P1/>f+ P/>f/>cosα

∑y=0, P1 – P/>f/>sinα– P/>cosα

P1= P/>f/>sinα+ P/>cosα

Получаем:

P/>sinα=f/>P/>cosα+ f/>P/>(cosα+ fsinα). (1)

tgα= 2/>f/(1 – f2)

Подставим значение коэффициента трения



f=tg2φ,

где φ – угол трения:

tgα=2tgφ/(1 – tg2φ)=tg2φ(2)

α<2 φ(3)

Следовательно, угол захвата должен быть меньше двойного угла трения. Коэффициент трения может колебаться в пределах 0,3 – 0,5, что соответствует углу захвата 30 – 50 ˚.

2) Определение соотношений между диаметром катка бегунов и диаметром дробимого материала (рис.2, схема б).

/>

где D– диаметр катка,

d– диаметр куска дробимого материала.

/>

При угле α = 50˚ получаем:

/>

При углеα = 30˚:

/>

D= (4,6…14) d. (6)



При D=1800 мм возможная крупность дробимого материала:

dmax= />.

При переработке влажных глин отношение D/dсоставляет 5…6,

следовательно для бегунов СМ – 365 максимальная крупность исходного материала составляет:

dmax= />.

Для обеспечения надёжного захвата материала максимальная крупность кусков принимается на 20% меньше.

d= 0,8/>dmax=0,8 />(360…300) = 288…240 мм.

3) Сила нормального давления, действующая на

материал (усилие раздавливание), H:

Pср= σсж/>F />Kρ(7)

где σсж– предел прочности материала при сжатии, H/м2,

для мягких пород σсж= 80МПа, для прочных σсж≥ 150МПа

(1 H/м2 = 10-6МПа); F – площадь дробления, м2;

Kρ-коэффициент разрыхления материала (для прочных пород

Kρ= 0,2 … 0,3, для глины Kρ= 0,4 … 0,6).

Полагая, что F=b/>l = b/>R/>β,

    продолжение
--PAGE_BREAK--

где l – длина дуги на участке измельчения материала, м;

R=D/2 — радиус катка, м;

b– ширина катков, м;

β — угол дуги, рад, β = α /2.

Формула (7) принимает следующий вид

При дроблении твердых пород (β=16°40’ ):

Pср= 0,04/>σсж/>b/>D, (8)



при дроблении глин (β = 24°20’ ):

Pср= 0,1 />σсж/>b/>D (9)

Для бегунов СМ – 365:

σсж= 80 МПа = 800000 Н.

B= 0,8 м;

D= 1,8 м.

Pср=0,1/>8000000/>0,8/>1,8=152000 Н.

4) Определение угловой скорости и числа оборотов вертикального вала бегунов.

На вращающейся чаше материал находится под действием двух сил: силы трения G/>f, удерживающей материал на чаше, и центробежной сил mω2/>стремящейся отбросить материал

(где r– наружный радиус качения катка; ω– угловая скорость вращения вертикального вала; />— линейная скорость.).

Чтобы материал не отбрасывался к борту чаши должно соблюдаться условие:

Gf/>m/>ω2/>r;

Gf/>m/>v2/r,

где ω– угловая скорость вращения вертикального вала;

m=G/g; v=/>r/>n/30.

Тогда:



Gf/>ω2/>r;

Gf/>,

где n– частота вращения вала.

ω/>(рад/с); (10)

n/>(об/мин). (11)

Приняв для увлажнённых глин f=0,5 получаем:

Угловая скорость вращения вертикального вала:

ω/>=2,4 рад/с

Частота вращения вала:

n/>= 23,3 об/мин.

5) Определение производительности бегунов.

Для ориентировочного расчёта производительности бегунов с решётчатым подом используют следующую формулу:

Q =/>(м3/с); (12)

Q = S/>l/>a/>n />60/>/>(м3/ч); (13)

где S– площадь отверстия в решётчатой плите, м2;

l– длина глиняного прутка, м, продавливаемого при каждом набегании катка (l= 25 – 35 мм для глин влажностью 20 – 22%);

а – число отверстий, перекрываемых катком за один оборот вертикального вала;

ω – угловая скорость вертикального вала, рад/с;

n– частота вращения вертикального вала, об/мин;

λ – поправочный коэффициент, λ = 0,8 – 0,9.

Исходные данные для бегунов мокрого помола СМ – 365:

S= 34 />2/>8 + 2/>= 745 мм2 =0,000745 м2;

а = 920;

l= 30мм = 0,03м;

λ = 0,8;

n= 22,7 об/мин.

Q= 0,000745 />0,03 />920/>22,7/>60/>0,8 = 22,4 м3/ч.

    продолжение
--PAGE_BREAK--

При плотности глины (влажностью 20%) γ = 1450 кг/м3получим:

Q= 22,4 />1450 = 38480 кг/ч = 38,4 т/ч.

6) Определение мощности двигателя.

Мощность двигателя может быть определена как сумма мощностей, необходимых в основном для преодоления сил трения качения и трения скольжения катков.

N= (N1+ N2)/ η, (14)

где N1– мощность, необходимая для преодоления сил трения качения;

N2– мощность, необходимая для преодоления сил трения скольжения катков.

η – КПД установки, η = 0,5 – 0,8.

Мощность, необходимая для преодоления сил трения качения

N1= />(кВт), (15)

где G– вес (сила тяжести катка), Н;

/>— коэффициент трения качения;

vср– средняя окружная скорость качения катка, м/с:

R– радиус катка, м.

Подставляя в формулу значение средней окружной скорости

vср=/>r/>n/30,

получаем

N1= />; (16)

N1= />= />(кВт), (17)

где i– число катков.

Исходные данные:

G= 90000 Н;

/>= 0,03;

r= 0,9 м;

n= 22,7 об/мин ;

i= 2;

R= 0,9 м.

N1 = />= 12,8 кВт.

Мощность, необходимая для преодоления сил трения скольжения катков:

N2= />(кВт); (18)

N2= />= />(кВт), (19)

где />— коэффициент трения скольжения;

b– ширина катка.

Для бегунов СМ – 365:

fск= 0,3;

b= 0,8 м.

N2= />= 25,7 кВт.

Необходимая мощность электродвигателя:

N = kN/>/>, (20)

где kN– коэффициент мощности двигателя на преодоление пускового момента, kN= 1,1 – 1,5.

N= 1,1/>/>= 60,48 кВт.

4.Проведение экспериментальных исследований зависимости функции от варьируемых параметров

Проведём исследование влияния изменения частоты вращения вертикального вала n на производительность.

Q= S/>l/>a/>n/>60/>/>(м3/ч).

Постоянные параметры:

Площадь отверстия в дырчатой плите S= 0,000745 м2;

Длина глиняного прутка l= 0,03 м;

Число отверстий, перекрываемых катками за один оборот вертикального вала a= 920;

Поправочный коэффициент λ = 0,8.

Варьируемый параметр изменяется в пределах: n= 22,7±5%.

Минимальное значение: nmin= 21,565 мин-1

Максимальное значение: nmax= 23,835 мин-1

Шаг варьирования: p= />= 0,227 мин-1.

Q1 = 0,000745 />0,03 />920/>60/>0,8/>21,565= 21,284 (м3/ч)

Q2= 0,000745 />0,03 />920/>60/>0,8/>=21,508 (м3/ч)

Q3= 0,000745 />0,03 />920/>60/>0,8/>22,019=21.733 (м3/ч)

Q4= 0,000745 />0,03 />920/>60/>0,8/>22,246 =21,956 (м3/ч)

Q5= 0,000745 />0,03 />920/>60/>0,8/>22,473=22,181 (м3/ч)

    продолжение
--PAGE_BREAK--

Q6= 0,000745 />0,03 />920/>60/>0,8/>= 22,4 (м3/ч)

Q7= 0,000745 />0,03 />920/>60/>0,8/>22,927 =22,629 (м3/ч)

Q8= 0,000745 />0,03 />920/>60/>0,8/>=22,853 (м3/ч)

Q9= 0,000745 />0,03 />920/>60/>0,8/>=23,077 (м3/ч)

Q10= 0,000745 />0,03 />920/>60/>0,8/>23,301 (м3/ч)

Q11= 0,000745 />0,03 />920/>60/>0,8/>23,835 = 23,525 (м3/ч)

Таблица 1

n, мин-1

21,565

21,792

22,019

22,246

22,473

22,7

22,927

23,154

23,381

23,608

23,835

Q,

м3/ч

21,284

21,508

21.733

21,956

22,181

22,4

22,629

22,853

23,077

23,301

23,525

Q = f(n).

Проведём исследование влияния изменения частоты вращения вертикального вала n на мощность двигателя.

N = kN/>/>(кВт)

Постоянные параметры:

Коэффициент увеличения мощности двигателя kN= 1,1;

Сила нажатия катка G= 90000 H;

Число катков i= 2;

КПД установки η= 0,7;

Радиус качения катков r= 0,9 м;

Коэффициент трения качения fk= 0,03;

Коэффициент трения скольжения fск= 0,3;

Ширина катка b= 0,8 м;

Радиус катка R= 0,9 м.

Варьируемый параметр изменяется в пределах: n= 22,7±5% мин-1.

Минимальное значение: nmin= 21,565 об/мин

Максимальное значение: nmax= 23,835 об/мин

Шаг варьирования p= 0,227.

N1= 1,1/>/>=57,45 (кВт)

N2= 1,1/>/>=58,05 (кВт)

N3= 1,1/>/>=58,66 (кВт)

N4= 1,1/>/>=59,26 (кВт)

N5= 1,1/>/>=59,87 (кВт)

N6= 1,1/>/>=60,5 (кВт)

N7= 1,1/>/>=61,07 (кВт)

N8= 1,1/>/>=61,68 (кВт)

N9= 1,1/>/>=62,28 (кВт)

N10= 1,1/>/>=62,89 (кВт)

N11= 1,190000·23,835·20,7·/>/>=63,49(кВт)

Таблица 2

n, мин-1

21,565

21,792

22,019

22,246

22,473

22,7

22,927

23,154

23,381

23,608

23,835

N,

    продолжение
--PAGE_BREAK--

кВт

57,45

58,05

58,66

59,26

59,87

60,5

61,07

61,68

62,28

62,89

63,49



N = f(n).

3) Проведём исследование влияния изменения числа отверстий в решётчатых плитах, перекрываемых катками на производительность.

Q= S/>l/>a/>n/>60/>/>(м3/ч).

Постоянные параметры:

Площадь отверстия в дырчатой плите S= 0,000745 м2;

Длина глиняного прутка l= 0,03 м;

Частота вращения вертикального вала n= 22,7 об/мин;

Поправочный коэффициент λ = 0,8.

Варьируемый параметр изменяется в пределах: а = 920±5%.

Минимальное значение: amin= 875

Максимальное значение: amax= 965

Шаг варьирования: p= />= 9 шт.

Q1= 0,000745 />0,03/>22,7 />60/>0,8 />875 =21,262 (м3/ч)

Q2= 0,000745 />0,03/>22,7 />60/>0,8 />=21,481 (м3/ч)

Q3= 0,000745 />0,03/>22,7 />60/>0,8 />= 21,699 (м3/ч)

Q4= 0,000745 />0,03/>22,7 />60/>0,8 />902 = 21,918 (м3/ч)

Q5= 0,000745 />0,03/>22,7 />60/>0,8 />=22,137 (м3/ч)

Q6= 0,000745 />0,03/>22,7 />60/>0,8 />920 = 22,356 (м3/ч)

Q7= 0,000745 />0,03/>22,7 />60/>0,8 />=22,574 (м3/ч)

Q8= 0,000745 />0,03/>22,7 />60/>0,8 />938 =22,793 (м3/ч)

Q9= 0,000745 />0,03/>22,7 />60/>0,8 />947 = 23,012 (м3/ч)

Q10= 0,000745 />0,03/>22,7 />60/>0,8 />956 = 23,23 (м3/ч)

Q11= 0,000745 />0,03/>22,7 />60/>0,8 />965 = 23,449 (м3/ч)



Таблица 3

а,

шт

875

884

893

902

911

920

929

938

947

956

965

Q,

м3/ч

21,262

21,481

21,699

21,918

22,137

22,356

22,574

22,793

23,012

23,23

23,449

Q= f(a).

4)Проведём исследование влияния изменения силы давления катка на мощность электродвигателя установки.

N = kN/>/>(кВт)

Постоянные параметры:

Коэффициент увеличения мощности двигателя kN= 1,1;

    продолжение
--PAGE_BREAK--

Частота вращения вертикального вала n= 22,7 мин-1;

Число катков i= 2;

КПД установки η= 0,7;

Радиус качения катков r= 0,9 м;

Коэффициент трения качения fk= 0,03;

Коэффициент трения скольжения fск= 0,3;

Ширина катка b= 0,8 м;

Радиус катка R= 0,9 м.

Варьируемый параметр изменяется в пределах:

G= 90 000±5% мин-1.

Минимальное значение: Gmin= 85500 H

Максимальное значение: Gmax= 94500H

Шаг варьирования: p= />= 900 Н.

N1= 1,1/>/>= 57,45 (кВт)

N2= 1,1/>/>= 58,06 (кВт)

N3= 1,1/>/>= 58,66 (кВт)

N4= 1,1/>/>= 59,27 (кВт)

N5= 1,1/>/>= 59,87 (кВт)

N6= 1,1/>/>= 60,48 (кВт)

N7= 1,1/>/>= 61,08 (кВт)

N8= 1,1/>/>= 61,69 (кВт)

N9= 1,1/>/>= 62,29 (кВт)

N10= 1,1/>/>= 62,89 (кВт)

N11= 1,1/>/>= 63,5 (кВт)

Таблица 2

G,

H

85500

86400

87300

88200

89100

90000

90900

91800

92700

93600

94500

N,

кВт

57,45

58,06

58,66

59,27

59,87

60,48

61,08

61,69

62,29

62,89

63,5

N = f(G).

По результатам вычислений строим графики.



Заключение

В результате проведённых вычислений были выявлены следующие зависимости:

С повышением частоты вращения вертикального вала увеличивается производительность бегунов;

С увеличением частоты вращения вала повышается мощность двигателя;

С увеличением числа отверстий в решётчатых плитах увеличивается производительность;

С увеличением силы давления катка на измельчаемый материал повышается мощность двигателя.



Список использованной литературы

Сапожников В.А. и др. «Механическое оборудование предприятий строительных материалов, изделий и конструкций». М., «Высшая школа». 1971. – 382 с.

Ильевич А.П. «Машины и оборудование для заводов по производству керамики и огнеупоров». М., «Высшая школа», 1979. – 343 с.

Сапожников Н. Я. «Атлас механического оборудования»

Уваров В.А., Семикопенко И.А., Чемеричко Г.И., «Процессы в производстве строительных материалов и изделий». БелГТАСМ, 2002. – 121с.


еще рефераты
Еще работы по производству