Реферат: Спуск и посадка космических аппаратов

--PAGE_BREAK--ТИПИЧНЫЕ СХЕМЫ СПУСКА.
Посадка космических аппаратов на поверхность безатмос-ферной планеты (например, Луны) обычно производится по схеме полета, предусматривающей  предварительный  перевод  КА  на планетоцентрическую орбиту ожидания  (окололунную  орбиту).

Перспективность и  преимущество такой схемы посадки опреде-

ляютсяследующими обстоятельствами:  свобода в выборе места

посадки; возможность проверки системы управления непосредс-


·         9 -

твенноперед спуском;  возможность уменьшения массы СА, так как часть  массы  можно оставить на орбите ожидания (напри-мер, топливо или прочный термозащитный отсек для посадки на Землю при возвращении).

После проведения на промежуточной  орбите  необходимых операций подготовки  к  спуску  включается тормозной двига-тель, и спускаемый аппарат переводится с орбиты ожидания на переходную орбиту  — эллипс траектории спуска (рис.1) с пе-рицентром вблизи предполагаемого места посадки.  В  опреде-ленной точке переходной орбиты вновь включается двигатель и начинается участок основного торможения, на котором решается задача эффективного   гашения  горизонтальной  составляющей вектора скорости СА.

Управление на  этом участке производится по программе, обеспечивающей заданные значения координат в конце  участка при минимальном расходе топлива; информация при этом посту-пает с инерциальных датчиков.

Заданные конечные значения координат определяют вид но-минальной траектории спуска на последующем участке конечно-го спуска  («прецизионном»  участке);  спуск может осущест-вляться по вертикальной или наклонной траектории.

Типичные траектории  полета на основном участке основ-

ноготорможения представлены на рис.2.  Кривая 1 заканчива-

етсянаклонной  траекторией  конечного  спуска,  кривая 2 -


·         10 -

вертикальной траекторией.Стрелками   показаны   направления вектора тяги ракетного двигателя,  совпадающие с продольной осью СА.  На рис.3 представлена  (в  увеличенном  масштабе) наклонная траектория  полета  на  участке  (А, О)  конечного спуска.

На участке конечного спуска, измерение фазовых коорди-нат объекта производится радиолокационным дальномером и из-мерителем скорости (доплеровским локатором).

К началу этого участка могут  накопиться  значительные отклонения (от программных значений) координат,  характери-зующих процесс спуска.  Причиной этого  являются  случайные погрешности определения параметров орбиты ожидания, погреш-ность отработки тормозного импульса, недостоверность сведе-ний о  гравитационном поле  планеты, закладываемых в расчет траектории спуска.

Кроме того,  полет на всех участках подвержен действию случайных возмущений — неопределенности величины массы  СА, отклонения от номинала тяги тормозного двигателя и т.д. Все это в сочетании с неточностью априорного знания рельефа по-верхности в районе посадки, делает необходимым терминальное управление мягкой посадкой.  В качестве исходной информации используются результаты  измерения высоты и скорости сниже-ния. Система управления мягкой посадкой  должна  обеспечить заданную точность посадки при минимальных затратах топлива.


·         11 -

На завершающем участке спуска (см.  рис.3) — «верньер-ном» участке  (В, О) происходит обычно вертикальный полет СА с  глубоким  дросселированием  тяги  тормозного  двигателя.  Верньерный участок вводится для того, чтобы повысить конеч-ную точность посадки,  так как влияние погрешностей опреде-ления параметров траектории на точность посадки СА снижает-ся при уменьшении величины отрицательного ускорения.  Кроме того,  если  тяга  непосредственно перед посадкой мала,  то уменьшается возможность выброса породы под действием  газо-вой струи и уменьшается опрокидывающее воздейсвие на СА от-раженной от поверхности планеты реактивной струи.


    продолжение
--PAGE_BREAK--ЗАДАЧИ, РЕШАЕМЫЕ СИСТЕМОЙ УПРАВЛЕНИЯ ПОЛЕТОМ СА.
Таким образом,  основное назначение системы управления полетом СА — компенсация возмущений,  возникающих в  полете или являющихся результатом неточности выведения СА на орби-ту ожидания.  СА стартует обычно с орбиты ожидания, поэтому задачи  управления естественно разделить на следующие груп-пы:

1.управление на участке предварительного торможения;

2.управление на пассивном участке;

3.управление на участке основного торможения;


·         12 -

4.управление на «верньерном» участке;

Более удобна  классификация  задач по  функциональному назначению (рис.4).

Основной навигационной задачей является (рис.5)  изме-рение навигационных параметров и определение по ним текущих кинематических параметров движения (координат и  скорости), характеризующих возмущенную траекторию (орбиту) движения СА.

В задачу наведения входит определение потребных управ-ляющих воздействий,  которые  обеспечивают  приведение СА в заданную точку пространсва с заданной скоростью и в требуе-мый момент времени, с учетом текущих кинематическихпарамет-ров движения,  определенных с помощью решения навигационной задачи, заданных ограничений и характеристик объекта управ-ления.

Задачу  управления можно проиллюстрировать  примером -

алгоритмом управления мягкой посадкой СА на Луну. Структур-

наясхема  соответствующей  системы управления представлена

на рис.6

Радиодальномер измеряет расстояние r до лунной поверх-

ностивдольопределенного направления, обычно совпадающего с

направлением продольной  оси СА.  Доплеровский локатор дает

информацию о текущем векторе скорости снижения  V,  инерци-

альныедатчики  измеряют вектор Q углового положения СА,  а


·         13 -

также вектор кажущегося ускорения V.

Результаты измерений поступают  на выход  управляющего устройства, в котором составляются оценки координат, харак-теризующих процесс  спуска (в частности,  высоты СА над по-верхностью Луны),  и формируются на их  основе  управляющие сигналы U ,  U, U, обеспечивающие терминальное управление мягкой посадкой (O — связанная система координат  СА).  При этом U, U задают ориентацию продольной оси СА (и, следова-тельно, тяги двигателя) и используюся как уставки для рабо-ты системы стабилизации, а управляющий сигнал U  задает те-кущее значение тяги тормозного двигателя.

В результате обработки сигналов U ,  U, U, тормозным двигателем и системой стабилизации полет СА  корректируется таким образом,  чтобы обеспечить выполнение заданных терми-нальных условий мягкой посадки.  Конечная точность поссадки считается удовлетворительной,  если  величина  вертикальной составляющей скорости в момент контакта с поверхностью пла-неты не  вызывает  допустимой деформации конструкции СА,  а горизонтальная составляющая скорости не приводит к  опроки-дыванию аппарата.

Задачи ориентации и стабилизации как задачи управления СА относительно  центра  масс формулируется следующим обра-зом:

1.совмещение осей спускаемого аппарата (или одной оси) с


·         14 -

осями (или осью) некоторой  системы  координат,  называемой базовой системой  отсчета,  движение которой в пространстве известно (задача ориентации);

2.устранение неизбежно  возникающих в полете малых угло-вых отклонений осей космического аппарата от  соответствую-щих осей базовой системы отсчета (задача стабилизации).

Заметим, что весь полет СА разбивается,  по  существу, на два участка:  активный (при работе маршевого двигателя); пассивный (при действии на СА  только  сил  гравитационного характера).

Решения перечисленных задач  (навигации  и  наведения, ориентации и стабилизации) на активных и пассивных участках имеют свою специфику.

Например, процесс   управления  полетом  на  пассивных участках характеризуется,  как правило, относительной мед-ленностью и  большой  дискретностью  приложения управляющих воздействий.

Совершенно иным является процесс управления полетом на активном участке,  например, при посадке на Луну. Непрерыв-но, начиная  с  момента  включения  тормозного двигателя, на борту решается навигационная задача:  определяются  текущие координаты СА  и  прогнозируются  кинематические  параметры движения на момент выключения двигателя.

Так же  непрерывно вычисляются и реализуются необходи-


·         15 -

мыеуправляющие воздействия (момент силы)  в  продольной  и поперечной плоскости наведения.  Процесс управления на этом этапе характеризуется большой динамичностью и, как  правило, непрерывностью. В  некоторых случаях задача наведения может решаться дискретно, причем интервал квантования  по  времени определяется требованиями к динамике и точности наведения.

Для решения перечисленных задач система управления по-летом СА последовательно (или параллельно) работает в режи-мах ориентации,  стабилизации,   навигации   и   наведения.  Приборы и  устройства,  обеспечивающие  выполнение того или иного режима управления и составляющие часть всего  аппара-турного комплекса системы управления, обычно называют сис-темами навигакции, наведения, ориентации и стабилизации.

Наиболее часто на практике системы, управляющие движе-нием центра масс космического корабля,  называют  системами навигации и  наведения,  а  системы,  управляющие движением космического корабля относительно центра  масс,-  системами ориентации и стабилизации.
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по производству