Реферат: К решению теоремы Ферма

Статья посвящена исследованию доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y. Проблему доказательства теоремы Ферма следует считать закрытой.

Более 350 лет профессиональные математики и любители пытаются доказать теорему Ферма. Однако до настоящнго времени нет общепризнанного доказательства. Тем не менее, интерес к загадочной теореме не угасает и до настоящего времени остается высоким.

В настоящей статье предлагается к рассмотрению простой метод доказательства, основанный на разделении числового множества yn + xn = zn (1)

на два подмножества, из которых первое содержит только те x и y для всех показателей степени n , которые могут содержатьрешения уравнения (1) в целых числах x , y , z , а второе подмножество содержит только нецелые решения.

Отделить друг от друга упомянутые подмножества представляется возможным путем разложения уравнения (1) на составные части по биному Ньютона и составления на их основе уравнения с учетом принятых ограничений для поиска целых решений. Для этого представим уравнение (1) в виде, удобном для разложения:

(x — a)n + xn –(x+b)n = 0 (2)

Здесь: x – переменное число, а < x целое число; n целое число, показатель степени; b целое или нецелое число, в зависимости от соотношения x , a , и n .

Сущность доказательства заключается в определении подходящих значений x,y,zдля удовлетворения уравнений ( 1 ) и ( 2 ) методом последовательных приближений. Задача решается применительно к 450сектору I квадранта в плоскостных координатах (x,y), т.к. из-за недостатка информации координата z равна 0. Полученные результаты могут быть распространены на остальные 7 секторов плоскости(x,y), определяя тем самым область распространения условий теоремы Ферма.

Итак, применяя формулу бинома Ньютона к выражению (2), получим:

(x–a)n + xn = 2xn — nxn-1 a + cn2 xn-2 a2 — cn3 xn-3 a3… + an

(x+b)n = xn +nxn-1 b + cn2 xn-2 b2 + cn3 xn-3 b3 .......+bn

D = xn — nxn-1 (a+b) + cn2 xn-2 (a2 -b2 ) — cn3 xn-3 (a3 +b3 )..+(an+ bn ) =0

(3)

Назовем выражение (3) основным уравнением в поисках целых решений уравнения (2). Подходящие значения x , y =( x a ), z =( x + b ), удовлетворяющие уравнениям (1) и (2), будем искать при условии a = b =1. Обоснование принятых допущений (ограничений) изложено ниже. Полагая a = b, уравнение (3) преобразуем к виду:

xn — 2nxn-1 a — 2cn3 xn-3 a3 — 2cn5 xn-5 a5 — … (an + an )=0 (4)

ОбозначимчерезP(a,n) = 2cn3 xn-3 a3 + 2cn5 xn-5 a5 +… ( an + an ) - добавку после первых двух членов уравнения (4). Тогда уравнение (4) примет вид:

xn — 2nxn-1 a — P(a,n) = 0

Разделив все члены уравнения на xn -1, получим выражение для искомого x

x=2 na + P ( a,n )/ xn -1 , гдеP(a,n)/xn-1 ³ (5)

При a = b = 1 выражение (5) примет вид:

x=2n+P( 1 ,n)/xn-1 (6)

Подходящие значения y=x-1 и z=x+1 определяются через известный х. Из формул (5) и (6) становится ясным, что при n>2 согласование левых и правых частей уравнений (1) и (2) возможно только при учете добавки P (1 , n )/ xn -1 .

Исходя из изложенного, целые числа х и у из теоремы Ферма следует однозначно отнести ко второму подмножествуyn + xn = zn

Ниже, в таблице приведены результаты расчетов согласования для n=2,3,4 и 5.

n x y=x-1 z=x+1 xn yn xn + yn zn D %
2 4 3 5 16 9 25 25 -
3 6,055 5,055 7,055 221 129 350 350 -
4 8,125 7,125 9,125 4350 2540 6890 6890 -
5 10,200 9,200 11,200 107000 66000 173000 175000 1,25

На основании изложенного можно сделать следующие предварительные выводы:

1. Согласование левых и правых частей уравнений (1) и (2) невозможно без учета добавки P ( a , n )/ xn -1 .

2. Если уравнение yn + xn = zn с учетом добавки P ( a , n ) выразить в числовых отрезках и спроектировать на плоскость (х, у), то на ней при n>2 образуется остроугольный треугольник, все стороны которого при a=b=1 выражены нецелыми числами: х=2n+P(1, n )/хn-1; у=2n-1+ P(1, n )/хn-1; z=2n+1+ P(1, n )/хn-1, что находит подтверждение при следующем рассмотрении добавки P(1, n )/хn-1 .

Для выяснения этого вопроса представим ее после сокращений в следующем виде

P(1,n)/ х n-1 = 2cn3 /x2 + 2cn5 /x4 +2cn7 /x6… ( 1 + 1 ) / xn -1

В числителе каждого члена разложения представлены сочетанияcnk, распределение которых симметрично, наподобие гаусовскому, относительно центра ( n+1)/2. В знаменателе функция x 2, возрастающая с каждым членом по квадратичному закону.

Первый член разложения, из-за малости x 2 имеет наибольшую величину и может выражаться целым числом со значащими цифрами после запятой (для n=15 – 1,1…; для n=25 – 1,8…; и т.п.). Последний член имеет наименьшую величину из-за большого знаменателяxn -1 (для n=3 – 2/62; для n=15– порядка 2/3014; для n=25– 2/5024 и т.п.)

Первая половина разложения по сумме значительно превышает вторую за счет резкого увеличения числителей. Все члены разложения второй половины меньше 1 за счет уменьшения числителей и дальнейшего возрастания знаменателей, и интенсовно уменьшаются по мере удаления от центра. В результате общая сумма разложения для n>14 (для n<=14 добавка <1) всегда будет определяться целыми числами со значащими цифрами после запятой, т.е. все эти числа будут нецелыми, что свидетельствует о достоверности и доказуемости теоремы Ферма.

3. Известно, что уравнение второй степениy 2 + x 2 = z 2 решается в целых числах, а её проекцией на плоскость (х, у) является прямоугольный треугольник. Можно предположить, что для более высоких степеней n найдется прямоугольная проекция, при которой решение уравнения Ферма будет происходить при целых x , y , z . Такое предположение оправдано для степени n=3 в объемных прямоугольных координатах x , y , z , в которых для уравнения ( x -2 a )3 +( x - a )3 + x 3 =( x + b )3, существуют целые числа 3,4,5,6 и им кратные, которые удовлетворяют условию 33 +43 +53 =63 .

Физически эти числа выражают сумму кубов в целых числах, по аналогии с n=2, где сумма квадратов означает сумму площадей. По сути мы получили новый вариант теоремы Ферма.

4. Искажения проекций (треугольников) по мере возрастания n обусловлены отражением на плоскости (х, у) несвойственных ей структур более высокого порядка. Отсюда можно заключить, что решения теоремы Ферма в целых числах связаны с наличием прямоугольных проекций, а при нецелых решениях- с искаженными проекциями в виде остроугольных треугольников.


Это подтверждается следующими математическими выкладками. Предварительно решим треугольник АВС из теоремы косинусов относительно cosC, где C –угол между сторонами а и b

сosC= (a2 + b2 -c2 )/2ab. Подставим вместо сторон а, b ис их аналоги из треугольных проекций при а = b =1:

а → x; b → y=x-1; c → z=x+1, гдеx=2n+P(1 ,n )/xn-1

После выполнения операций преобразования получим:

cosCn = 0,5-1,5/ xn -1 (7)

По полученной формуле проведены расчеты
n 2 3 4 5 10
x-1 3 5.054 7.125 9.200 19.0..
cosC 0.202 0.289 0.337 0.421 0.5
Co 90 78 73 70 65 60

Из которых следует :

— искажение треугольников при n>2 обусловлено изменением угла С от 90о при n=2 до 60о при n ∞ при этом треугольники превращаются из прямоугольных в остроугольные и в пределе – в равносторонние.

— В остроугольных треугольниках нет целых решений уравнений Ферма т.к. их стороны сформированы нецелыми числами.

— Решение теоремы Ферма в целых числах присуще только прямоугольным проекциям на плоскость (х, у) числовых отрезков уравнений y 2 + x 2 = z 2

5. Второй сектор квадранта является аналогом первого- зеркальным отражением первого при y>x со всеми вытекающими из этого результатами.

6. В процессе проведения анализа по доказательству теоремы Ферма в общем виде получены 4 компактных метода доказательства теоремы при целых x, y, когда требуется показать, что при n>2 число z является нецелым.

Первый метод доказательства следует из рассмотрения остроугольного треугольника, для которого Z 2 = x 2 + y 2 –2 xycosc . Требуется доказать, что Z является нецелым числом. В нем известны x и y – целые числа, а cosc определен с учетом ограничений a=b=1. Он изменяется в пределах 0< cosc < 0,5 (см. ф-лу (7) и табл. на стр.3) и является функцией нецелого, иррационального числа х. Значит и соsc является также нецелым числом со множеством значащих цифр после запятой. Благодаря этому нецелым становится выражение 2 xycosc , что в свою очередь делает нецелым Z 2 и извлеченный из него квадратный корень Z 0.

В основу второго метода также заложено рассмотрение остроугольного треугольника. Его Z 2 = x 2 + y 2 –2 xycosc всегда меньше соответствующего Z п 2 = x 2 + y 2 прямоугольного треугольника и числовой отрезок Z 2 находится внутри числового отрезкаZ п 2 =x 2 + y 2 .

Учитывая, что при принятых ограничениях y=x-1, т.е. отличается на единицу, то корень, извлеченный из Z 2 будет иметь нецелое значение, т.к. между числами x-1 и x нет других целых чисел.

Третий метод основан на другом принципе. Его сущность заключается в следующем.

Для последовательности целых чисел 1,2,3,4 и т.д. составляется ряд их квадратов:

1 4 9 16 25 36 4964 81 100 121 144 169 196 и т.д.

2 4 6 8 10 12 14 16 18 20 22 24 26 и т.д.

Между числами первого ряда размещается нижний ряд, представляющий собой количество целых чисел (порядковых номеров), размещенных между двумя смежными квадратами чисел x и x+1. Эти целые (и нецелые) числа z1 не могут иметь при извлечении из них корней целых значений, т.к. находятся между числами, отличающимися на единицу, а будут иметь значения x+D, где D=z1 /Dx2

Учитывая, что при n>2 для остроугольных треугольников z02 всегда меньше zп2 или соответствующего Dx2 в ряду квадратов, необходимо вставить числовой отрезок z02 в числовой отрезок Dx2 и убедиться, что извлеченный корень из числа z02 является нецелым числом.

Рассмотрим доказательство на примере для n=5.

Примем: x=2n=10; y=2n-1=9;cosC=0,337 (см. Формулы 6 и 7).

z02 =102 +92 -2*10*9*0,337=120,34.

В ряду квадратов это число находится между числами 100 и 121, являющимися квадратами целых чисел 10 и 11.

Кв. корень из числа 120,34 равен 10.97 – нецелое число.

Проверка: 105 +95 =159049. Корень пятой степени из числа 159049 равен 10,97. В случае необходимости z02 может быть уточнено путем повторного (многократного) определения cosC по трем известным сторонам треугольника.

Примечание. Числа ряда квадратов относятся к остроугольным треугольникам различных степеней n. Числа второго ряда, отмеченные жирным шрифтом и поделенные на 4, указывают на степень n, к которой относится пара чисел, выбранная из условия ограничения a=b=1, в соответсвии с формулой (6).

Четвертый метод основан на том, что аналогичные степенные ряды могут быть построены для любых n. Тогда для произвольно выбранной степени n=k представляется возможным непосредственно убедиться в том, что извлеченный корень степени k из числаzk =xk +yk является нецелым числом.

P . S. Встает вопрос: при каких условиях нецелое число 10,97…, возведенное в степень n=5, превратится в целое число 159049? Напрашивается ответ: число 10.97… должно быть иррациональным т.е иметь после запятой неограниченное количество значащих цифр.

Остановимся на обосновании принятых в статье допущений (ограничений).

Принятие a =1 обусловлено получением максимальных , (*) при которых для всех a <1 нет решений уравнений Ферма в целых числах, а zn наиболее близок к 2 xn .

Принятие b =1 обусловлено тем, что 1 является единственным для всех n целым числом. Это подтверждается следующими соображениями. Из уравнения (*) имеем:, откуда b £ x ( n Ö 2-1). Подставляя вместо х его близкое целое значение 2 n , получим формулуb £ 2 n ( n Ö 2-1) для практических расчетов, которые свидетельствуют о том, что вблизи начала координат ( на удалении х для каждой степени n) b изменяется от 1,65 при n=2 до 0 при возрастании n до ¥. Отсюда вывод: в растворе 450сектора всюду b является нецелым числом, исключающим получение целых x,y,z при решении уравнений (1) и (2), за исключением одной точки, где b =1, которую следует проверять на наличие решения в целых числах x,y,z, что и было проделано выше с отрицательным результатом.

Расчеты при a=b=2,3,4…. относятся к точкам на значительном удалении от начала координат, кратным коэффициентам a=2,3,4….

Результаты расчетов при этом аналогичны выполненным при а=b=1, за исключением случаев, когда х определяется целым числом с конечным числом значащих цифр после запятой. Тогда можно подобрать такой коэффициент пропорциональности а умножение на который нецелых чисел х, у,z сделает их целыми числами, для которых будет справедливо ( x * a ) n +( y * a ) n =( z * a ) n .

В этом случае теорема Ферма станет недостоверной или имеющей исключения при n>2. В принципе теорема Ферма может считаться достоверной, если добавка P ( a , n )/ xn -1 является иррациональным числом. Тогда невозможно использовать коэффициент пропорциональности a .

В иррациональности добавкиP (1, n )/ xn -1 можно убедиться, если проводить многократное уточнение величины х методом последовательных приближений, ибо при делении целых числителей в добавке на нецелые, многократно уточняемые знаменатели, в составе добавки найдется хотябы один иррациональный результат деления, который превратит всю добавку в иррациональное число.

Наконец, анализируя расположение секторов на плоскости (x,y) и, учитывая, что нечетные функции xn и yn могут принимать положительные и отрицательные значения, можно составить следующую схему расположения этих функций на плоскости (x,y), т.е. в области распостранения условий теоремы Ферма:

— вся плоскость (x,y) — для четных показателей степени n

— квадрант I — для положительных x и y

— квадрант III- для отрицательных x и y

— в квадрантах II и IVдля нечетных n будут иметь место разности типа xn yn или yn xn , рассмотрение которых теоремой Ферма не предусмотрено.

ВЫВОДЫ

1. Разработан метод доказательства теоремы Ферма в общем виде. Определены основное уравнение (3) и рабочие формулы (2), (5), (6), (7) для проведения анализа и расчетов.

2. Решение уравнений Ферма в нецелых числах при n>2 обусловлено образованием на плоскости (x,y) искаженных (остроугольных) проекций функции yn + xn = zn. При проекциях в виде прямоугольных треугольников решения получаются в целых числах.

3. Теорема Ферма распространяется на всю плоскость (x,y), кроме II и IV квадрантов при нечетных n.

Николай Иванович Пичугин, ветеран ВОВ иВС,

Москва 2001 – 2004 год

Т. 396 –90-24

e –meil:hrendy@rumbler.ru

еще рефераты
Еще работы по математике