Реферат: Курсовая работа по прикладной математике

Министерство общего и профессионального образования

Российской Федерации

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ

ИНСТИТУТ ЗАОЧНОГО ОБУЧЕНИЯ

Контрольная работа

по дисциплине «Прикладная математика»

Специальность Бухгалтерский учет и аудит

Курс 2

Группа БуиА-6-99/2

Студент

Студенческий билет №

ВАРИАНТ №25

Адрес

« » мая 2001г.

Проверил:

____________________/ /

«___»_______________2001г.

Москва 2001г.


Задача №1. Линейная производственная задача.

Предприятие может выпускать четыре вида продукции, используя для этого три вида ресурсов. Известны технологическая матрица А затрат любого ресурса на единицу каждой продукции, вектор В объемов ресурсов и вектор С удельной прибыли

4 0 8 7 316

А= 3 2 5 1 В= 216 С=(31, 10, 41, 29)

5 6 3 2 199

Найти производственную программу (х1, х2, х3, х4), максимизирующую прибыль

z=31х1 +10х2 +41х3 +29х4

Затраты ресурсов 1-го вида на производственную программу

4х1 +0х2 +8х3 +7х4 ≤316

Затраты ресурсов 2-го вида на производственную программу

3х1 +2х2 +5х3 +х4 ≤216

Затраты ресурсов 3-го вида на производственную программу

5х1 +6х2 +3х3 +2х4 ≤199

Имеем

4х1 +0х2 +8х3 +7х4 ≤316

3х1 +2х2 +5х3 +х4 ≤216 (1)

5х1 +6х2 +3х3 +2х4 ≤199

где по смыслу задачи

х1 ≥0, х2 ≥0, х3 ≥0, х4 ≥0. (2)

Получена задача на нахождение условного экстремума. Для ее решения систему неравенств (1) при помощи дополнительных неизвестных х5, х6, х7 заменим системой линейных алгебраических уравнений

4х1 +0х2 +8х3 +7х4 +х5 =316 (I)

3х1 +2х2 +5х3 + х4 +х6 =216 (II) (3)

5х1 +6х2 +3х3 +2х4 +х7= 199 (III)

где дополнительные переменные имеют смысл остатков соответствующих ресурсов, а именно

х5 – остаток сырья 1-го вида,

х6 – остаток сырья 2-го вида,

х7 – остаток сырья 3-го вида.

Среди всех решений системы уравнений (3), удовлетворяющих условию неотрицательности

х1 ≥0, х2 ≥0, х3 ≥0, х4 ≥0, х5 ≥0, х6 ≥0, х7 ≥0 (4)

надо найти то решение, при котором функция

z=31х1 +10х2 +41х3 +29х4

будет иметь наибольшее значение

Организуем направленный перебор базисных решений при помощи симплекс метода.

Из функции z(x) видно, что наиболее выгодно начать производство с 3-го ресурса.

Найдем ведущее уравнение:

bi 316 216 199 316

min — = — ----- — = -----

ai3 >0 8 5 3 8

Примем I-е уравнение за ведущее. Решаем симплекс методом:

С Базис Н 31 10 41 29 Поясне-ния
х1 х2 х3 х4 х5 х6 х7
0 х5 316 4 8 7 1
х6 216 3 2 5 1 1
х7 199 5 6 3 2 1
z0-z 0-z -31 -10 -41 -29
41 х3 39,5 1/2 1 7/8 1/8
0 х6 18,5 1/2 2 -27/8 -5/8 1
х7 80,5 7/2 6 -5/8 -3/8 1
z0-z 1619,5 -21/2 -10 55/8 41/8
41 х3 28 -6/7 1 54/56 10/56 -1/7 Все ∆j≥0
х6 7 8/7 -23/7 -4/7 1 -1/7
31 х1 23 1 12/7 -10/56 -6/56 2/7
z0-z 1861 8 5 4 3

Оптимальная производственная программа:

х1 =23, х2 =0, х3 =28, х4 =0

Остатки ресурсов:

Первого вида – х5 =0;

Второго вида – х6 =7;

Третьего вида – х7 =0

Максимальная прибыль zmax =1861

Обращенный базис Q-1

10/56 0 -1/7

Q-1 = -4/7 1 -1/7

-6/56 0 2/7

х5 х6 х7

Базис Q

8 0 4

Q= 5 1 3

3 0 5

х3 х6 х1

Самопроверка.

10/56•8+0•5-1/7•3 10/56•0+0•1-1/7•0 10/56•4+0•3-1/7•5 1 0 0

Q-1 •Q= -4/7•8+1•5-1/7•3 -4/7•0+1•1-1/7•0 -4/7•4+1•3-1/7•5 = 0 1 0

-6/56•8+0•5+2/7•3 -6/56•0+0•1+2/7•0 -6/56•4+0•3+2/7•5 0 0 1


10/56•316+0•216-1/7•199 28

Q-1 •B= -4/7•316+1•216-1/7•199 = 7

-6/56•316+0•216+2/7•199 23


Задача № 2 . Двойственная задача.

Предприниматель Петров, занимающийся производством других видов продукции, но с использованием 3-х таких же видов ресурсов, какие имеются у нас, предлагает нам продать ему по определенным ценам все имеющиеся у нас ресурсы и обещает заплатить у1 за каждую единицу 1-го ресурса

у2 за каждую единицу 2-го ресурса

у3 за каждую единицу 3-го ресурса.

В нашей задаче технологическая матрица А, вектор объемов ресурсов В и вектор удельной прибыли С имеют вид

4 0 8 7 316

А= 3 2 5 1 В= 216 С=(31, 10, 41, 29)

5 6 3 2 199

для производства единицы продукции 1-го вида мы должны затратить, как видно из матрицы А 4 единицы ресурса 1-го вида, 3 единицы ресурса 2-го вида, 5 единиц ресурса 3-го вида.

В ценах у1, у2, у3 наши затраты составят

4у1 +3у2 +5у3 ≥31

Аналогично, во 2-м столбце матрицы А указаны затраты различных ресурсов на производство единицы продукции 2-го вида

2у2 +6у3 ≥10

Аналогично, в 3-м столбце матрицы А указаны затраты различных ресурсов на производство единицы продукции 3-го вида

8у1 +5у2 +3у3 ≥41

Аналогично, в 4-м столбце матрицы А указаны затраты различных ресурсов на производство единицы продукции 4-го вида

7у1 +у2 +2у3 ≥29

Учтем, что за все имеющиеся у нас ресурсы нам должны заплатить

316у1 +216у2 +199у3

Таким образом, проблема определения расчетных оценок ресурсов приводит к задаче линейного программирования: найти вектор двойственных оценок

У=(у1, у2, у3 )

Минимизирующий общую оценку всех ресурсов

f=316у1 +216у2 +199у3

при условии, что по каждому виду продукции суммарная оценка всех ресурсов, затрачиваемых на производство единицы продукции, не меньше прибыли, получаемой от реализации единицы этой продукции:

4у1 +3у2 +5у3 ≥31

2у2 +6у3 ≥10

8у1 +5у2 +3у3 ≥41

7у1 +у2 +2у3 ≥29

При этом оценки ресурсов не могут быть отрицательными

у1 ≥0, у2 ≥0, у3 ≥0

На основании 2-й основной теоремы двойственности

Х=(х1, х2, х3, х4 ) и у=(у1, у2, у3 )

Необходимо и достаточно выполнения условий

х1 (4у1 +3у2 +5у3 -31)=0

х2 (2у2 +6у3 -10)=0

х3 (8у1 +5у2 +3у3 -41)=0

х4 (7у1 +у2 +2у3 -29)=0

Учитывая, что в решении исходной задачи х1 >0, x3 >0

Поэтому

4у1 +3у2 +5у3 -31=0

8у1 +5у2 +3у3 -41=0

Учтем, что 2-й ресурс был избыточным и, согласно теореме двойственности, его двойственная оценка равна нулю у2 =0

Имеем систему уравнений

4у1 +3у2 +5у3 -31=0

8у1 +5у2 +3у3 -41=0

Решим систему:

4у1 +5у3 =31

у1 =(31-5у3 )/4

8((31-5у3 )/4)+3у3 =41

-7у3 =-21

у1 =(31-15)/4

откуда следует

у1 =4, у3 =3

Таким образом, получили двойственные оценки ресурсов

у1 =4, у2 =0, у3 =3

Общая оценка всех ресурсов

f=316у1 +216у2 +199у3

f=1264+0+597=1861


Задача № 2 .1. Задача о «расшивке узких мест производства».

При выполнении оптимальной производственной программы 1-й и 3-й ресурсы используются полностью, образуя «узкие места производства». Их необходимо заказать дополнительно.

Пусть Т=(t1, 0, t3 ) – вектор дополнительных объемов ресурсов.

Так как мы предполагаем использовать найденные двойственные оценки ресурсов, то должно выполняться условие

Н+ Q-1 Т≥0

Необходимо найти вектор

Т=(t1, 0, t3 )

максимизирующий суммарный прирост прибыли

w=4t1 +3t3

28 10/56 0 -1/7 t1 0

7 + -4/7 1 -1/7 · 0 ≥ 0

23 -6/56 0 2/7 t3 0

Предполагаем, что дополнительно можно получить не более 1/3 первоначального объема ресурса каждого вида

t1 316

0 ≤ 1/3 216

t3 199

где t1 ≥0, t3 ≥0

10/56t1 -1/7t3 ≥-28

-4/7t1 -1/7t3 ≥-7

-6/56t1 +2/7t3 ≥-23


-10/56t1 +1/7t3 ≤28

4/7t1 +1/7t3 ≤7

6/56t1 -2/7t3 ≤23

t1 ≤316/3, t3 ≤199/3

t1 ≥0, t3 ≥0

t1 t3
I -156,8
I 196
II 12,25
II 49
III 214,66
III -80,5
IV 105,33
V 66,33

Программа расшивки имеет вид

t1 =0, t2 =0, t3 =49

и прирост прибыли составляет

w=4t1 +3t3 =3∙49=147

Сводка результатов приведена в таблице:

Сj 31 10 41 29 b x4+i yi ti

aij

4 8 7 316 4
3 2 5 1 216 7
5 6 3 2 199 3 49
xj 23 28 1861 147
∆j 8 5

Задача № 3 . Транспортная задача линейного программирования.

Исходные данные:

31 40 41 49

45 4 5 8 6

60 3 2 5 1

65 5 6 3 2

Общий объем производства ∑аi=45+60+65=170 единиц продукции.

Потребителям требуется ∑bi=31+40+41+49=161 единиц продукции.

Так как продукции производится больше на 9 единиц, чем требуется потребителям, то мы имеем открытую модель транспортной задачи. Для превращения ее в закрытую вводим фиктивный пункт потребления с объемом 9 единиц. Для нахождения первого базисного допустимого решения используем правило «северо-западного угла».

b1 =31 b2 =40 b3 =41 b4 =49 b5 =9
a1 =45 31 14 * p1 =0
a2 =60 26 34 p2 =-3
a3 =65 7 49 9 p3 =-5
q1 =4 q2 =5 q3 =8 q4 =7 q5 =5

Θ=9 z(x1 )=31·4+14·5+26·2+34·5+7·3+49·2+9·0=535

b1 =31 b2 =40 b3 =41 b4 =49 b5 =9
a1 =45 31 5 9 p1 =0
a2 =60 35 25 * p2 =-3
a3 =65 16 49 9 p3 =-5
q1 =4 q2 =5 q3 =8 q4 =7 q5 =5

Θ=25 z(x2 )=31·4+5·5+35·2+25·5+16·3+49·2+9·0=490

b1 =31 b2 =40 b3 =41 b4 =49 b5 =9
a1 =45 31 5 9 p1 =0
a2 =60 35 25 p2 =-3
a3 =65 41 24 p3 =-2
q1 =4 q2 =5 q3 =5 q4 =4 q5 =

z(x3 )=31·4+5·5+35·2+25·1+41·3+24·2+9·0=415

Задача № 4 . Динамическое программирование. Распределение капитальных вложений.

Исходные данные:

xj 100 200 300 400 500 600 700
f1 (xj ) 10 23 30 38 43 49 52
f2 (xj ) 13 25 37 48 55 61 66
f3 (xj ) 16 30 37 44 48 50 49
f4 (xj ) 10 17 23 29 34 38 41

Для решения используем метод «северо-восточной диагонали».

-x2 100 200 300 400 500 600 700
x2 10 23 30 38 43 49 52
10 23 30 38 43 49 52
100 13 13 23 36 43 51 56 62
200 25 25 35 48 55 63 68
300 37 37 47 60 67 75
400 48 48 58 71 78
500 55 55 65 78
600 61 61 71
700 66 66
100 200 300 400 500 600 700
F2 ( ) 13 25 37 48 60 71 78
x2 ( ) 100 200 300 200 300 400 500
-x3 100 200 300 400 500 600 700
x3 13 25 37 48 60 71 78
13 25 37 48 60 71 78
100 16 16 29 41 53 64 76 87
200 30 30 43 55 67 78 90
300 37 37 50 62 74 85
400 44 44 57 69 81
500 48 48 61 73
600 50 50 63
700 49 49
100 200 300 400 500 600 700
F3 ( ) 16 30 43 55 67 78 90
x3 ( ) 100 200 200 200 200 200 200
-x4 100 200 300 400 500 600 700
x4 16 30 43 55 67 78 90
90
100 10 88
200 17 84
300 23 78
400 29 72
500 34 64
600 38 54
700 41 41

x4* =x4 (700)=0

x3* =x3 (700-x4* )=x3 (700)=200

x2* =x2 (700-x4* -x3* )=x2 (700-200)=x2 (500)=300

x1* =700-x4* -x3* -x2* =700-0-200-300=200

x1 =200

x2 =300

x3 =200

x4 =0


Задача № 5 . Задача формирования оптимального портфеля ценных бумаг.

Исходные данные:

m0 m1 m2 s1 s2
2 4 6 7 8

Требуется сформировать оптимальный портфель заданной эффективности из 3-х видов ценных бумаг: безрисковых эффективности 2 и некоррелированных рисковых ожидаемой эффективности 4 и 6 и рисками 7 и 8. Необходимо узнать, как устроена рисковая часть оптимального портфеля и при какой ожидаемой эффективности портфеля возникает необходимость в операции short sale и с какими ценными бумагами?

4 49 0

m0=2, М=, V=

6 0 64

Зададимся эффективностью портфеля mp

Найдем обратную матрицу к V

1/49 0

V-1 =

0 1/64

далее

4 1

M = I =

6 1


1/49 0 4 2 1/49 0 2 2/49

V-1 (M-m0I)= · — = · =

0 1/64 6 2 0 1/64 4 1/16

2/49

(M-m0I)T V-1 (M-m0I)=(2 4) · = 65/196

1/16

Рисковые доли:

x1* =(mp -2) 8/65=(mp -2) 0,12

x2* =(mp -2) 49/260=(mp -2) 0,19

Безрисковая доля:

x0* =1-(mp -2) 0,31

Найдем значение mp, при котором возникает необходимость в проведении операции short sale:

(mp -2) 0,31=1

mp -2=1/0,31

mp =3,21+2

mp =5,21

Следовательно, если mp >5,21 то x0* <0 и необходимо провести операцию short sale.


Задача № 6 . Провести анализ доходности и риска финансовых операций.

Даны четыре операции Q1, Q2, Q3, Q4. Найти средние ожидаемые доходы Qi и риски ri операций. Нанести точки (Qi, ri ) на плоскость, найти операции, оптимальные по Парето. С помощью взвешивающей формулы найти лучшую и худшую операции.

(0, 1/5), (2, 2/5), (10, 1/5), (28, 1/5)

(-6, 1/5), (-5, 2/5), (-1, 1/5), (8, 1/5)

(0, 1/2), (16, 1/8), (32, 1/8), (40, 1/4)

(-6, 1/2), (2, 1/8), (10, 1/8), (14, 1/4)

Q1 2 10 28
1/5 2/5 1/5 1/5
Q2 -6 -5 -1 8
1/5 2/5 1/5 1/5
Q3 16 32 40
1/2 1/8 1/8 1/4
Q4 -6 2 10 14
1/2 1/8 1/8 ¼

Q1 =8,4 r1 =10,4

Q2 =-1,8 r2 =4,7

Q3 =16 r3 =17,4

Q4 =2 r4 =8,7

j(Q1 )=2 Q1 -r1 =6,4

j(Q2 )=2 Q2 -r2 =-8,3

j(Q3 )=2 Q3 -r3 =14,6

j(Q4 )=2 Q4 -r4 =-4,7

Лучшей операцией является операция №3, худшей операцией является операция №2.

Оптимальной точки нет, так как нет ни одной точки, не доминируемой никакой другой.

еще рефераты
Еще работы по математике