Реферат: Bilet

Билет№1

1)         Функция y=F(x) называется периодической, еслисуществует такое число Т, не равное нулю, что для любых значений аргумента изобласти определения функции выполняются  равенства f(x-T)=f(x)=f(x+T).Число Т называется периодом функции. Например, y=sinx –периодическая функция (синусоиду нарисуешь сам (а)) Периодом функции являютсялюбые числа вида T=2PR, где R–целое, кроме 0. Наименьшим положительным периодом является число T=2P. Для построения графика периодической функции достаточнопостроить часть графика на одном из промежутков длинной Т, а затем выполнитьпараллельный перенос этой части графика вдоль оси абсцисс на +-Т, +-2Т, +-3Т,…

2)         Степенью числа а, большего нуля, с рациональнымпоказателем r=m/n (m-целоечисло;n-натуральное, больше 1) называется число nSQRa^m, т.е. a^m/n = nSQRa^m. Степень числа 0 определена только дляположительных показателей; 0^r=0 для любого r>0. Свойства степеней с рациональным показателем Длялюбых рациональных чисел r иs илюбых положительных a и bсправедливы следующие свойства. 1) Произведение степеней с одинаковымиоснованиями равно степени с тем же основанием и показателем, равнымсумме показателей множителей: a^r * a^s = a^r+s.

2)Частное степеней с одинаковыми основаниями равно степени с тем же основанием ипоказателем, равным разности показателей делимого и делителя: a^r: a^s = a^r-s.

3) Привозведении степени в степень основание оставляют прежним, а показателиперемножают: (a^r)^s = a^rs   4) Степеньпроизведения равна произведению степеней: (ab)^r = a^r *b^r.   5) Степень частного равна частному степеней (a/b)^r = a^r / b^r.   6) Пусть rрациональное число и число a больше нуля, но меньшечисла b, 0<a<b, тогда: a^r < b^r, если r- положительноечисло; r^r > b^r, если r-отрицательноечисло.7) Для любых рациональных чисел r и s из неравенства r<s следует, что: a^r <a^s при a>1; a^r > a^s при 0<a<1.    Докажем свойство2 Пусть r=m/n и s=p/q, где n и q – натуральные числа, а m и p – целые числа. По определениюстепени с  рациональным показателем имеем: a^m/n: a^p/q = nSQRa^m: qSQRa^p. Приведём корни к одному показателю. Для этоговоспользуемся свойством корней n-й степени: nSQRa = nrSQRa^r, r>0. Имеем: nSQRa^m:qSQRa^p = nqSQRa^mq: nqSQRa^pn = nqSQRa^mq / nqSQRa^pn Используясвойство частного корней, получим: nqSQRa^mq / nqSQRa^pn =nqSQRa^mq / a^pn = nqSQRa^mq-pn. Применим определение степени срациональным показателем: nqSQRa^mq-pn = a^mq-pn/nq =a^mq/nq-pn/nq = a^m/n-p/q = a^r-s.

Билет №2

1.Точка Х0 наз-ся точкой максимума функции f,если для всех х из некоторой окрестности точки х0 выполнено неравенство f(x)£f(x0)

Окрестностью точки х0 наз-ся любой интервал, сод-щий

эту точку. Например, функция y=-x*x-3имеет точку максимума х0=0.

Точка х0 наз-ся точкой минимума функции f,если для всех х из некоторой окрестности х0 выполнено неравенство f(x0) £f(x)

Например, функция y=x+2 имеет точкуминимума х0=0.

2.                     1)Если |a|>1 тоуравнение sinx=a корней не имеет, так как |sinx|£1 для любогох.

2)Пусть |a|£1а) На промежутке –пи/2; пи/2 функция y=sinx возрастает,следовательно по теореме о корне, уравнение sinx =a  имеетодин корень x=arcsin a.

Б) На промежутке пи/2;3пи/2 функция y=sin x убывает, значит по теореме о корне ур-ие sin x=a имеет одно решение x=пи-arcsin a.

В) учитывая периодичность функции y= sin x (периодфункции равен 2пи n) решение ур-ия можно записать так:х=arcsin a +2пи n

x=пи- arcsin a +2пи n

решение данного ур-ия можно записать в виде следующей формулы

x=(-1)^n  arcsin a + пи n

при четных n(n=2k) мы получим всерешения, записанные первой формулой, а при нечетных n(n=2k+1)-все решения записанные второй формулой. 

 

Билет №3

1)         арксинусом числа а называется число, для которого выполнены следующиедва условия: 1)-p/2 <= arcsin a <= p/2; 2) sin(arcsina)=a. Из втоого условия следует, что |a|<=1 Пример1. (рис 26) arcsinSQR3 / 2 =p/3, так как: 1) –p/2 <= p/3 <=p/2; 2)sin p/3=SQR3 / 2 Пример2.Arcsin SQR5/2 неимеет смысла, так как  SQR5 / 2 >1,a arcsin a определён при –1 <= a <= 1 ОпределениеАрксинусом числа а называется такое число из отрезка [-Пи/2; Пи/2], синус которого равен а.

2)         Если функция F-первообразная функции f на промежутке I, то функция y=F(x)+C (c-const) также являетсяпервообразной функции f на промежутке I.Любая первообразная функции f на промежудке I может быть записана в виде F(x)+C.Доказательство. 1) Воспользуемся определением первообразной: (F(x)+C)’=F’(x)+C’=f(x),следовательно, y=F(x)+C – первообразная функции f на промежутке I. 2) Пусть Ф и F- первообразные функции f напромежутке I.   Покажем, что разность Ф-F равна постоянной. Имеем  (Ф(x) – F(x))’ = Ф’(x) – F'(x)=f(x)-f(x)=0,следовательно, по признаку постоянства функции на интервале Ф(x)-F(x)=C.Значит любую первообразную можно записать в виде F(x)+C.Графики любых двух первообразных для функции y=f(x)получаются друг из друга параллельным переносом вдоль оси Ox(рис. 18)

Билет №4

1)         Арккосинусом числа а называется такое число, для которого выполненыследующие два условия: 1) 0<=arccosa<=p; 2)cos(arccosa)=a. Из условия 2 следует, что |a|<=1 Пример 1 (рис 28) arccos1/2=p/3, таккак: 1)0<= p/3 <= p; 2) cos p/3 = ½. Пример2. Arccos p не имеет смысла, так как p ~=3,14 > 1; arccos a  определён при |a|Б=1

2)         Показательной функцией называется функция вида y=a^x,где а- заданное число, а >0, a неравно 1. Свойствапоказательной функции 1) Областью определения показательной функцииявляются все действительные числа. Это следует из того,что для любого x принадлежащего Rопределено значение степени a^x (при a>0).2) Множеством значений показательной функции являются все положительныедействительные числа: E(y)=(0;+бескон.) 3) а)Показательная функция y+a^x возрастает на всей областиопределения, если a>1.  б) Показательнаяфункция Y=a^x убывает на всей области определения, если0<a<1.  Докажем, что если a>1,то большему значению аргумента (x2>x1) соответствуетбольшее значение функции (a^x2 > a^x1). Из свойствстепени известно, если r>s и a>1,то a^r >a^s. Пусть х2 > x1и a > 1, тогда a^x2 >a^x1(по свойству степени). А это означает, что функция  y=a^x1при a>1 возрастает на всей области определения.Докажем, что если 0 < a<1, то большему значениюаргумента (x2>x1) соответствует меньшее значениефункции (a^x2 < a^x1). Из свойств степени известно,если r>s и 0<a<1, то a^r<a^s. Пусть x2>x1 и 0<a<1, тогда a^x2 < a^x1 (посвойству степени). А это означает, что функция y=a^xпри 0<a<1 убывает на всей области определения.   4)Нет таких значений аргумента, при которых значения показательной функции равнынулю, т.е. у показательной функции нет нулей. 5)Показательная функциянепрерывна на всей области определения.  6) Показательнаяфункция дифференцируема в каждой точки области определения, производнаявычисляется по формуле (a^x)’ = a^x ln a. (график нарисунке 29)


Билет№ 5

1)         На интервале (-Пи/2; Пи/2) функция тангенс возрастает ипринимает все значения из R. Поэтому для любого числа ана интервале (-Пи/2; Пи/2) существует единственный корень bуравнения tgx=a. Это число bназывают арктангенсом числа а и обозначают arctga.     Определение Арктангенсом числа а называется такое число из интервала (-Пи/2; Пи/2)тангенс которого равен а.  Пример arctg1=Пи/4,так как tgПи/4=1 и Пи/4Î(-Пи/2; Пи/2);    arctg(-SQR3)=-Пи/3,так как tg(-Пи/4)=-SQR3 и –Пи/3Î(-Пи/2; Пи/2).

2)         Логарифмической функцией называется функция вида y = loga x, где а -заданное число, a>0, aне рано 1. Свойства логарифмической функции 1) Областьюопределения логарифмической функции являются все положительные действительные числа.Это следует из определения логарифма числа b пооснованию a; loga b имеет смысл, если b>0 2) Множеством значений логарифмической функцииявляются все действительные числа. Пусть y0 –произвольное действительное число. Покажем, что найдётся такое положительноезначение аргумента x0, что выполняется равенство y0 = logax0. По определению логарифма числа имеем: x0 = a^y0, a^y0 > 0. Мы показали, что нашлось значение x0 > 0, при котором значение логарифмической функции равноу0 (у0 – произвольное действительное число). 3)  Логарифмическая функцияобращается в нуль при х=1. Решим уравнение logax=0. Поопределению логарифма получаем: a^0 = x, т.е. x = 1. 4) а)логарифмическая функция y=loga x возрастает на всейобласти определения, если a>1.Докажем, что большемузначению аргумента (х2 > х1) соответствует большеезначение функции  (loga x2 > loga x1), если a>1. Пусть x2 > x1 > 0;тогда используя основное логарифмическое тождество, запишем это неравенство ввиде a^logax2 > a^logax1. (1) В неравенстве (1)сравниваются два значения показательной функции. Поскольку при a>1 показательная функция возрастает, большее значениефункции может быть только при большем значении аргумента, т.е. logax2 > logax1. б)Логарифмическая функция y=logax убывает на всей области определения, если 0<a<1. 5) Логарифмическая функция y=logax: а) при a>1принимает положительные значения, если x>1; отрицательныезначения, если 0<x<1 б) при  0<a<1 принимает положительные значения, если 0<x<1, и отрицательные значения, если x>1. Пусть a>1, тогда функция y=logaxвозрастает на всей области определения (рис. 31); причём loga1=0. Из этого следует, что: для x>1 logax > loga1, т.е. logax>0; для 0<x<1  logax < loga1, т.е. logax<0. Пусть 0<a<1; тогда функция y=logax убывает на всей области определения (рис.32); причём loga1=0. Из этого следует, что: для x>1 logax < loga1, т.е. logax < 0; для0<x<1  logax > loga1, т.е.logax > 0. 6) Логарифмическая функциянепрерывна на всей области определения.

 

Билет №6

1)         Пусть на некотором промежутке задана функция y=f(x);x0 – точка этого промежутка; Dx – приращения аргумента x; x0 + DX  такжепринадлежит этому промежутку; Dy –приращение функции. Предел отношения (если он существует) приращения функции кприращению аргумента при стремлении приращения аргумента к нулю называетсяпроизводной функции в точке. Пусть материальная точка движется по координатнойпрямой по закону x=x(t), т.е. координата этой точки x- известная функция времени t. Механический смыслпроизводнойсостоит в том, что производная от координаты повремени есть скорость: v(t)= x’(t).

2)         1) Если |a|>1, то уравнение cos x = a решений не имеет, так как |cos x|<=1 для любого x. 2)Рассмотрим случай |a|<=1(рис 35)а) На примежудке [0; Пи] функция y=cosx убывает, значит,уравнение cosx=a имеет один корень x=arccos a. Учитывается, что функция y=cos x – периодическая спериодом 2Пиn, запишем все решения уравнения cosx=a на промежутке [2Пиn; Пи+2Пиn], n принадлежит Z, в виде x = arccos a+ 2Пиn, где n принадлежит Z. Б)  На промежутке [-Пи; 0]функция y =cosx возрастает, следовательно, уравнение cosx=a имеет один корень, а именно,x=-arccos a. Учитываяпериодичность функции y=cos. Делаем вывод, что решениемуравнения cos x = a на промежудке [-Пи+2Пи; 2Пиn], где n принадлежит Z, являются числа вида x=-arccos a + 2 Пиn, где n принадлежит Z.Таким образом, все ершения уравнения могут быть записаны так: x=+-arccos a + 2Пиn, где n принадлежит Z.


Билет № 7

1)         Пусть на некотором промежутке задана функция y=f(x);x0-точка этого промежутка; Dx-приращение аргумента х; точка х0+ Dx принадлежит этому промежутку; Dy-приращение функции.  Предел отношения (если онсуществует) приращения функции к приращению аргумента при стремлении приращенияаргумента к нулю называется производной функции в точке.  Пусть заданадифференцируемая функция y=f(x) (рис.36). Геометрический смысл производной состоитв том, что значение производной функции в точке x0равно угловому коэффициенту касательной, проведённой к графику функции в точкес абсциссой x0: f’(x0)=R, где R-угловой коэффициенткасательной.

2)         1) На промежутке (-Пи.2; Пи.2) функция y=tgx возрастает, значит, на этом промежутке, по теореме о корне, уравнение tgx=a имеет один корень, а именно, x=arctg a (рис 37).  2)Учитывая, что период тангенса равен Пиn, все решения определяютсяформулой x=arctg a + Пиn, nпринадлежитZ.

 

Билет №8

1) Пусть ф-ция f(x) задана нанекотором промежутке, а –точка этого промежутка. Если для ф-ции выполняетсяприближенное равенство f(x) »f(a)

с любой, наперед заданной точностью, для всех х, близки хк а, то говорят, что ф-ция непрерывна в точке а. Иными словами ф-ция f непрерывна в точке а, если f(x) ®f(a) прих ®а.

Ф-ция непрерывная вкаждой точке промежутка наз-ся непрерывной на промежутке.

Гр. непрерывной напромежутке ф-ции представляет собой непрерывную линию. Иными словами гр. можнонарисовать не отрывая карандаша от бумаги.

Например ф-ция f(x)=3^x непрерывна в точке х0=2.Действаительно 3^x ®3^2, при х®2. Ф-ция f(x)=3^x непрерывна намножестве всех действительных чисел, а ее график можно нарисовать не отрываякарандаша от бумаги.

2) Арифметическим корнем n-ой степени из числа а наз-сянеотрицательное число n-ая степень к-рого равна а.

Св-ва корней: Для любыхнатуральных n, целого k и любых неотрицательных чисел a и b выполняются следующие св-ва:

1.   N sqr ab= n sqr a* n sqr b

2.   n sqr (a/b)= (nsqr a)/( n sqr b) b ¹0

3.   n sqr (k sqr a)=kn sqr (a), k> 0

4.   n sqr (a) = kn sqr(a^k) ,k>0

5.   n sqr (a^k)=( nsqr a)^k (ели k£0, то а¹0)

6.   Для любых неотрицательныхчисел а и b таких,  что а < b выполняется неравенство:

n sqr a< n sqr b, если 0£a<b

      Док-во св-ва №5: По опр-ниюкорня n-ой степени (n sqr a^k)^n=a^k; (n sqr a)^k³0, так как n sqr a³0. Найдем n-ю степень выражения(n sqr a)^k. По св-ву возведения степени в степень ((n sqr a)^k)^n=(n sqr a)^nk=(( n sqra)^n)^k; по определению корня n-ой степени ((n sqra)^n)^k=a^k.

Следовательно n sqr a^k=( n sqr a)^k.

Билет №9

1. Все рациональные и дробно-рациональныеф-ции непрерывны на всей области определения. Этот факт следует из того чторациональные и дробно-рациональные ф-ции дефференцируемы  во всех точках своихобластей опр-ия.

Например: ф-ция f(x)=x^3-7X^2+24x непрерывнана множестве действительных чисел; а ф-ция g(x)=(x^3+8)/(x-2) непрерывнана промежутке (-¥:2) и напромежутке (2;+ ¥)

2. Логарифмом числа b наз-сяпоказатель степени в к-рую нужно возвести основание а чтобы получить число b.

Из опр-ия имеем:  a^ logab =b (осн-оелог-ое тождесто)

Св-ва  логарифмов: При  любом а>0(а¹1), илюбых пол-ных х и у выполняются следующие св-ва:

1)    loga1=0

2)    logaа=1

3)    loga(ху)= logaХ+ logaУ

Док-во: Воспользуемся осн-ным лог-им тождеством

   a ^ logab =b и св-ом показат-нойф-ции

а^ х+у =а^x * а^y        имеем

а^ loga(xy)=xy= a^ logax *a^ logay =a^logax +logay

4)    loga(Х/У)= logaХ- logaУ

5)    logaХ^Р= рlogaХ

6)    Формула перехода:

logaХ= logbX/ logbA

Билет №10.

1. Ф-ция F наз-сяпервообразной ф-ции f на промежутке I,если для всех значений аргумента из этого промежутка F¢(x)=f(x). Напримерф-ция F(x)=4x^2+3x-1 явл-ся первообразной ф-ции f(x)=12x^3 на множестве всех действительных чисел.Действительно F¢(x)=12X^2+3, т.е. F¢(x)=f(x).

2. Если каждомудействительному числу поставлен в соответствие его тангенс, то говорят, чтозадана ф-ция тангенс. Обозначается это так: y=tg x.

Св-ва:1) Областью опр-ния ф-ции явл-ся все действительныечисла, кроме чисел  вида

X=пи/2 +пи k, kÎZ.

Это следует из опред-ия тангенса (tg x=sinx/cos x). Нужно искл-ть числа, при к-рых знаменатель cosx=0 т.е. х= пи/2+пи k, kÎZ.

2) Множеством значений ф-ции явл-сявсе действительные числа: Е(у)=(-¥;+¥).

3) Ф-ция явл-ся нечетной ф-цией, т.е. для любого хÎD(y) выполняетсянер-во tg(-x)=-tg x. покажем это,  tg(-x)=sin (-x)/cos (-x)= -sin x/cos x= -tg x

4) Ф-ция явл-ся периодической спериодом пи k, где k-целое кроме 0.Наименьшим положительным периодом тангенсаявл-ся число пи.

5) Ф-ция тангенс принимает значения 0 при х=пи k, kÎZ. Решением ур-ияtg x=0 явл-ся числа х=пи k, kÎZ

6) Ф-ция tg принимает положительныезначения при пи k<x<пи/2+ пи k, kÎZ.

Ф-ция tg принимает отрицательныезначения при

-пи/2+пи k<x<пи k, kÎZ.Промежутки знакопостоянства следуют из опр-ия tg x=sin x/cosx.

7) Ф-ция tg возрастаетна всей области опр-ия т.е. на промежутках (-пи/2+пи k;пи/2 +пи k) kÎZ

 

Билет №11

1)         Пусть на отрезке [a;b] задана непрерывнаяи неотрицательная функция y=f(x); S-площадь соответствующейкриволинейной трапеции (рис42). Для вычисления площади Sразобьём отрезок [a;b] на n равных отрезков, длиннакаждого отрезка [Xj;Xj+1] равна b-a /n; на каждом из отрезков построим прямоугольник, высота которого равназначению функции f(Xj); площадь такого прямоугольникаравна f(Xj)* DX=f(Xj) * b-a /n. При увеличении числа промежутков,на которые  разбивается отрезок [a;b], ступенчатая фигура,состоящяя из прямоугольников, будет «мало отличатся» от криволинейной трапеции,и если Sn-сумма площадей всех прямоугольников, то Sn~=S.  В курсе математического анализа показывается, что для любой непрерывнойна отрезке [a;b] функции y=f(x) существует число, ккоторому стремится сумма площадей прямоугольников при неограниченном увеличенииn(n ® ¥). Это число называютинтегралом, т.е. Sn ® integral (a;b) f(x) dx при n® ¥

2)         Если каждому действительному числупоставлен в соответствие его синус, то говорят, что задана функция синус(обозначение y=sin x). Свойства функции синус  1)Область определения функции синус является множество всех действительных чисел,т.е. D(y)=R. Каждому действительному числу х соответствуетединственная точка единичной окружности Px,получаемая поворотом точки P0(1;0) на угол, равный храдиан. Точка Рх имеет ординату, равную sinx.Следовательно, для любого х определено значение функции синус.  2)Множеством значений функции синус является промежуток  [-1;1], т.е. E(y)=[-1;1]. Это следует изопределения синуса: ордината любой точки единичной окружности удовлетворяетусловию –1 <= Ypx<=1,т.е. –1<=sin x<=1  3)Функция синус являетсянечётной, т.е. для любого х принадлежащего Rвыполняется равенство sin(-x)=-sinx. Пусть точка Рх получена при повороте точки Р0 нах радиан, а точка Р-х получена при повороте точки Р0 на –х радиан (рис 43).Треугольник  ОрхР-х является равнобедренным; ON-биссектрисаугла РхОР-х, значит, ON является медианой и высотой, проведённой кстороне РхР-х. Следовательно, PxN = P-xN, т.е. ординатыточек Рх и Р-х одинаковы по модулю и противоположны по знаку. Это означает, чтоsin(-x)=-sinx.  4) Функция синус являетсяпериодической с периодом 2ПиR, где R- целое. Кроме 0. Наименьшим положительным периодом синуса является число2Пи.  Каждому действительному числу вида x+2ПиR, где R принадлежит Z,соответствует единственная точка единичной окружности Рх + 2ПиR, получаемая поворотом точки Р0(1;0)на угол x+2ПиR имеет ординату, равную sinx или sin(x+2ПиR). Таким образом, sin(x+2ПиR)=sinx. Этим показано, что числа вида 2ПиR, гдеR- целое, кроме 0, являются периодом функции. При R=1 имеем sin(x+2Пи)=sinx, следовательно, число2Пи также является периодом функции синус. Покажем, что 2Пи-наименьшееположительное число, являющееся периодом функции синус. Пусть Т – положительныйпериод функции синус; тогда sin(x+T)=sinx при любом х. Эторавенство верно и при x= Пи.2, т.е. sin(пи/2 + T)=sin Пи/2 = 1. Но sinx=1, если x= Пи/2 + 2Пиn, где n принадлежит Z. Наименьшее положительное число вида 2Пиn есть2Пи.  5) Функция синус принимает значение нуль при x=ПиR, где R принадлежит Z. Решением уравнения sinx=0 являются числа x=ПиR, где R принадлежит Z.  6) Функция синус принимает положительные значения при2ПиR<x<Пи+2ПиR, где R принадлежит Z.  Функция синус принимает отрицательные значенияпри Пи+2ПиR<x<2Пи+2ПиR, где R принадлежит Z.   Промежутки знакопостоянства (рис44) следуетиз определения синуса.  7) Функция синус возрастает напромежутках [-Пи/2 + 2ПиR; Пи/2 + 2ПиR], где R принадлежит Z, и убывает на промежутках [Пи/2 + 2ПиR; 3Пи/2 + ПиR], где R принадлежит Z  Докажем,что функция синус возрастает на промежутке [-Пи/2; Пи/2]. Пусть х1принадлежит  [-Пи /2; Пи /2] и х2>x1. Сравним два значенияфункции: sinx2 – sinx1 =2cos x1+x2/2 * sin x2-x1/2; 0< x2-x1/2 <= Пи/2, -Пи/2 < x1+x2/2< Пи/2, поэтому, учитывая промежутки знакопостоянства синуса и косинуса, имеем sin x2-x1/2 > 0, cos x1+x2/2>0. Таким образом, sinx2-sinx1>0, значит, большему значению аргумента соответствует большее значениефункции, т.е. функция синус возрастает на промежутке [-Пи/2; Пи/2]. В силу периодичности синуса можно утверждать,что синус возрастает на промежутках [-Пи/2 + 2ПиR; Пи/2 + 2ПиR], где R принадлежит Z.  8)Функция синус имеет максимумы,равные 1, в точках Пи/2 + 2ПиR, где где R принадлежит Z. Функция Синус имеет минимумы, равные–1, в точках 3Пи/2 + 2ПиR, где R принадлежит Z.  Покажем, что точка х0=Пи/2 является точкой максимума.Функция синус возрастает на промежутке [-Пи/2;Пи/2], т.е. sinx<sinПи/2 для любого х принадлежащего[-Пи/2; пи/2].Функция синус убывает на промежутке [Пи/2; 3Пи/2], т.е. sin x <sin Пи/2 для любого х принадлежащего[Пи/2; 3Пи/2].Ледовательно, х0+Пи/2 является точкой максимума (по определению), а значение sinx=1 является максимумом. В силу периодичности функции синус можноутверждать, что в точках Пи/2 + 2ПиR, где R принадлежит Z,функция имеет максимум, равный 1. 9)Функции арксинус дифференцируема в каждой точке области определения;производная вычисляется по формуле (sin x)’=cosx. (рис 45)

Билет №12

1)         Пусть функция y=f(x) непрерывна на отрезке [a;b]; F-первообразнаяфункции. В этом случае интеграл (a;b) f(x)dx = F(b) – F(a).   Пример Вычислить: Интеграл (0; Пи)cos(2x – Пи/4) dx = ½sin(2x – Пи/4)|(0; Пи)= ½sin(2Пи — Пи/4) – ½sin(-Пи/4)=½sin(-Пи/4) + ½sin(Пи/4)=-SQR2/4 + SQR2/4 = 0.

2)         Если каждому действительномучислу поставить в соответствие его косинус, то говорят, что задана функциякосинус.  Свойства функции косинус  1)D(y)=R  Каждому действительному числу х соответствует единственная точкаединичной окружности Рх, получаемая поворотом точки Р0 (1;0) на угол х радиан.Точка Рх имеет абсциссу, равную cos x. Следовательно, длялюбого х определено значение функции y=cosx.  2)Множествомзначений функции косинус является промежуток [-1;1],т.е. E(y)=[-1;1]. Это следует из определения косинуса: абциссалюбой точки единичной окружности удовлетворяет условию –1<=Xpx <=1, т.е. –1<= cosx<=1. 3)Функция косинус является чётной, т.е. для любого x ÎR выполняется равенство cos(-x)=cosx. Пусть точка Рх получина при повороте точки Ро на х радиан, а точкаР-хполучина при повороте точки Р0 на –х радиан(рис46). Треугольник ОрхР-хявляется равнобедренным; ON – биссектриса угла РхР-х, значит, является ивысокой, проведённой к стороне РхР-х. Из этого следует, что точки Рх и Р-химеют одну и ту же абсциссу ON, т.е. cos(-x)=cosx. 4)Функция косинус является периодической с периодом2ПиR, где R-целое, кроме 0. Наименьшимположительным периодом косинуса являеися число 2Пи. Каждому действительномучислу вида x+2ПиR, где RÎZ, соответствует единственнаяточка единичной окружности Рх+2ПиR, получаемая поворотом точкиР0 (1;0) на угол (x+2ПиR) радиан. Точка Рх+2ПиR имеет абсциссу, равную cosx или cos(x+2ПиR), где RÎZ. Таким образом, cosx=cos(x+2ПиR). При R=1 имеем cosx=cos(x+2Пи), следовательно, число 2Пи является периодомфункции косинус. Покажем, что 2Пи – наименьший положительный период. ПустьТ-положительный период косинуса; тогда cos(x+T) = cosx при любом значении х. Это равенство должно быть верно и при х=0, т.е. cosT = cos0=0, следовательно, cosT=0.Но cosT=0, если T=2ПиR, где RÎZ. Наименьшее положительноечисло вида 2ПиR есть 2Пи.  5)Функция косинуспринимает значение нуль при х=Пи/2 + ПиR, гдеRÎZ. Решением уравнения cosx=0 являются числах+Пи/2+ПиR, где RÎZ. 6)Функция косинус принимает положительные значения при–Пи/2 + 2ПиR<x<Пи/2 + 2ПиR, гдеRÎZ. Функция косинус принимает отрицательные значения при Пи/2 +  2ПиR<x<3Пи/2 + 2ПиR, гдеRÎZ. Промежутки знакопостоянства (рис47) следуют из определениякосинуса. 7)Функция косинус возрастает на промежутках [-Пи + 2ПиR; 2ПиR], где RÎZ, и убывает на промежутках [2ПиR; Пи+2ПиR], где RÎZ. Чтобы доказать утверждение о промежутках возрастания функции косинус, заметим,что cosx=sin(Пи/2+х). Функция y+sin(Пи/2+ х) возрастает, если –Пи/2 + 2ПиR<=Пи/2 + x<=Пи/2 + 2ПиR, где RÎZ; т.е. если –Пи + 2ПиR, где RÎZ; т.е. если –Пи+2ПиR<=x<=2ПиR, где RÎZ. Поскольку sin(Пи/2 + х)=cosx, функция y=cosx возрастает, если –Пи+2ПиRR<=x<=2ПиR, где RÎZ. Аналогично обосновывается утверждение о промежутках убывания функции. 8)Функциякосинус имеет максимумы, равные  1, в точках 2ПиR, гдеRÎZ. Функция косинус имеет минимумы, равные –1, в точках Пи+2ПиR, где RÎZ. Покажем, что функция y=cosx имеет максимумы в точках 2ПиR, где RÎZ. Замечая, что cosx=sin(Пи/2 + х), найдём точки максимума функции y=sin(Пи/2+x). Её точки максимума Пи/2 + х=Пи/2+2ПиR, где RÎZ, т.е. x=2ПиR, где RÎZ. Максимум функции косинусравен 1.  Аналогично проводятся рассуждения о точках минимума. 9)Функциякосинус непрерывна на всей области определения.10)Функция косинус дифференцируема в каждой точке области определения; производная функциикосинус вычисляется по формуле  (cosx)’=-sinx.

Билет №13

1) Для того чтобы найти наибольшее(наименьшее)значение ф-ции y=f(x) имеющее на отрезке [a;b]конечное число критических точек,нужно:1. Найти критические точки, принадлежащие отрезку[a;b];2.найти значения ф-ции в критическихточках принадлежащих отрезку [a;b];3.Найти значение ф-ции на концахотрезка;4. Из полученных чисел (значения ф-ции в критических точках и на концахпромежутка ) выбрать наиболее наибольшее (наименьшее).Пример: Найти наибольшееи наименьшее значение ф-ции y=x^3 –3x на отрезке    [-1,5;3].1)D(y)=R; 2) найдем критическиеточки

y’ =3x^2 –3; А)y’ = 0 если 3x^2 -3=0; 3(x^2 –1)=0; x=0 или x=1. Б)точек в к-рых производная не существует нет. 3) y(-1)=-1+3=2;y(1)=1-3=2; y-(-1.5)=(1.5)^3-3*  (-1.5)=(-1.5)^3+2*1.5^2=1.5^2(-1.5+2)=2.25*.5=1.125

y(3)=27-9=18;     -2<1.125<2<18

y(1)<y(-1.5)<y(-1)<y(3).

Min  [-1,5;3]      y(x)=y(1)=-2

Max [-1,5;3]        y(x)=y(3)=18

2)   1.sin a+ sin b = 2 sin (a+b)/2*cos(a-b)/2,

       2. sin a- sin b=2 sin(a-b)/2 *cos(a+b)/2,

       3. cos a+ cos b=2 cos (a+b)/2*cos(a-b)/2

       4. cos a- cos b=-2 sin (a+b)/2*sin(a-b)/2

1)Пусть a=x+y иb=x-y из этих равенств находим:

x=(a+b)/2 и y=(a-b)/2

2) выведем ф-лы для суммы и разности синусов.

                Докажем формулу 1:Воспользовавшись формулами синуса суммы и синуса разности имеем sin a+sin b = =sin(x+y)+ sin(x-y)= sin x cos y+ sin y cos x+sin x*     cos y-sin y*cos x= 2sin x*cos y= 2 sin(a+b)/2*cos(a-b)/2. Такимобразом sin a+ sin b=2sin(a+b)/2*cos(a-b)/2

                Докажем формулу 2:

Sin a-sin b= sin (x+y)- sin(x-y)=sin x cosy+ sin y*cos x –sin x*cos y+sin y*cos x= 2 sin y*cos x=2 sin(a-b)/ 2 *cos(a+b)/2.  Таким образом sin a- sin b=2sin(a-b)/2 *cos(a+b)/2,

3) выведем ф-лы для суммы и разностикосинусов.

                Докажем формулу 4:

Cos a- cos b=cos(x+y)-cos(x-y)=cos x* cosy-sin x*    sin y-cos x*cos y-sin x*sin y=-2sin x*sin y=-2sin(a+b)/2*sin(a-b)/2Таким образом

                 cos a- cos b=-2 sin(a+b)/2*sin (a-b)/2

Билет №14

1) Пусть задана ф-ция y=f(x)ее график изображен на рис 49. Точка х1 является точкой максимума, х2 являетсяточкой минимума, т.е. точки х1 и х2- точки экстремума. Значения ф-ции в точкахэкстремума наз-ся экстремумами ф-ции. Например, значения ф-ции y=cos x в точках x= 2 пи k, где k ÎZ, явл-ся экстремумами (максимумами)ф-ции, т.е. Ymax=1

2)           1.Cos (a-b)=cosa*cos b +sin a*sin b;

               2.cos (a+b)=cos a*cos b- sina*sin b;

               3. sin(a-b)=sin a*sin b- sinb*cos a

               4. sin (a+b)=sin a*cos b+sinb*cos a

Докажем ф-лу (1):     1) проведем радиуо ОА, равный R, вокруг точки О на угол a и b (рис50).Получим радиус ОВ и радиус ОС.    2)Пусть В(х1; у1) С(х2; у2).     3)Введем векторы ОВ(х1; у1), ОС(х2; у2)

4)По опр-ию скалярного произведения ОВ*ОС=х1*х2+у1*у2(*)        5) по опр-ию синуса и косинуса  х1=R*cos a, y1=R*sina, x2=R* cos b, y2=R*sin b         6) заменяя в равенстве(*)х1, х2, у1, у2, получим ОВ*ОС=R^2*cos a*cos b+R^2*sin a*sin b(**).       7) По теореме о скалярном произведении векторов ОВ*ОС=|OB|*|OC|*cosÐBOC=R^2cosÐBOC,

ÐBOC= a-b(см. рис. 50) или ÐBOC= 2 пи-(a-b) (см. рис. 51)      cos(2 пи-(a-b))=cos(a-b) следовательноОВ*ОС=R^2*cos (a-b) (***)          8) Из неравенств (**)и (***) получим: R^2*cos(a-b)=R^2*cos a*cos b+R^2*sin a*sin b. Разделивлевую и правую части на R^2¹0 получимформулу (1) косинуса разности

Cos (a-b)=cos a*cos b +sin a*sin b;

С помощью этой формулы легко вывести формулу (2) косинусасуммы и (4) синуса суммы:

Cos (a+b)=cos(a-(-b))=cos a*cos(-b)+sina*sin (-b)=  cos a*cos b-sin a*sin b значит cos(a+b)=cosa*cos b- sin a*sin b. Докажем формулу (4): sin(a+b)=cos(пи/2-(a+b))=cos((пи/2-a)-b)=cos(пи/2-a)cos b+sin(пи/2-a)sin b=sin a*cos b+cosa*sin b Значит sin (a+b)=sin a*cos b+sin b*cos a

Докажем формулу (3) Применяя последнюю формулу имеем sin(a-b)=sin(a+(-b))=sin a*cos (-b)+sin(-b)*cos a=sin a*cos b-sinb*cos a. Значит sin(a-b)=sin a*cos b-sin b*cos a. Придок-ве формул (1)-(4) были использованы следующие факты:1) формулы приведения2)ф-ция y=sin x-нечетная, ф-ция y=cosx-четная. Из формул сложения пологая b=пи n/2, гдеn ÎN, можновывести формулы привидения для преобразований выражений видаcos(пи*n/2 ±a),sin(пи*n/2 ±a).Например cos(пи*n/2 -a)= cos пи/2*cos a+sin пи/2*sin a=0+sin a=sin a.Аналогично выводятся следующие формулы:

Sin (пи-а)=sin a

Sin (пи+а)=-sin a

Sin (3 пи/2-а)=-cos a и т.п. Из формул сложения следуют формулы двойногоаргумента:

Sin 2a=2sin a*cos a

Cos 2a=cos^2 a-sin^2 a

Билет №15

1.Если производная функции равна 0на некотором промежутке, то эта функция постоянна на этом промежутке.

Если g¢(x)=0 на некотором промежутке то касательная к графикуфункции y=g(x), например g(x)=6 в каждой точке данногопромежутка параллельна оси ОХ.

2.Если f- непрерывная инеотрицательная функция на отрезке[а;b], то площадьсоответствующей криволинейной  трапеции можно выч-ть по формуле

S=F(b)-F(a)

Док-во:

1)    Пусть y=S(x) –площадь криволинейной трапеции, имеющей основание [a;x] где xÎ[а;b],заметим что S(a)= 0 S(b)=S

2)    Покажемчто y=S(x)-первообразная ф-ция y=f(x)

т.е. S¢(x)=f(x) что бынайти производную ф-ции y=S(x),

воспользуемся опр-ем производной:

а) зададим преращение ∆x (пусть∆x>0)

б) найдем приращение ф-ции

∆S=S(x+∆x)-S(x)

в) составим соотношение

∆S/∆x=S(x+∆x)-S(x)/∆x

г) выясним чему равен предел отношения при ∆x®0Разность S(x+∆x)-S(x)равна площади криволинейной трапеции с основанием [x; x+∆x]

Если ∆x®0 то эта площадь приблизительно равна площади прямоугольника f(x)* ∆x   т.е.

S(x+∆x)-S(x) »f(x) * ∆x

Имеем

S(x+∆x)-S(x)/∆x »f(x)

При ∆x®0. Этим показано что S¢(x)=f(x)

3)Равенство S¢(x) =f(x)означает что S- первообразная функцииfна заданном промежутке.

3)По основному св-ву первообразной имеем F(x)=S(x)+C,где F- какая-либо первообразная для f.

При x=a получим, что

F(a)=S(a)+C т.е. C=F(a).

При x=b имеем

F(b)=S(b)+F(a)

Следовательно

S=S(b)=F(b)-F(a)

Билет №16

1)          Пусть задана функция y=f(x), дифференцируемая вкаждой точке промежутка I, точки a иb принадлежат этому промежутку. На интервале (a;b) найдётся такая точка с, для которой выполняетсяравенство f’(x)= f(b)-f(a)/b-a. Геометрически этот фактможно истолковать следующим образом. Пусть функция y=f(x)дифференцируема на некотором промежутке. Точки a и b принадлежат этому промежутку; через точки A(a;f(a)) и B(b;f(b)) проведенасекущая. Тогда на интервале (a;b) найдётся такая точкас, что угловой коэффициент касательной, проведённой через точку (с; f(c)),будет равен угловому коэффициенту секущей АВ (рис 55).

2)          Функция заданная формулой f(x)=x^a,называется степенной. Свойства степенной функции при а>1 1)D(f)=[0;+¥], если а не является натуральным числом. Это следует изопределения степени с рациональным показателем. Если а натуральное число, то D(f)=(-¥;+¥) по определению степени с натуральным показателем. 2)E(f)=[0;+¥) для всех а>1, кроме а= 2R+1. Где RÎN. Это следует из определения степени с рациональным показателем.E(f)=(-¥;+¥) для нечётных а, т.е. а=2R+1, где RÎN. 3)Если а-чётное натуральное число, то даннаяфункция является чётной. Т.к. f(-x)=(-x)^2R = ((-x)^2)^R= (x^2)^R= x^2R = f(x). Если а-нечётное натуральное число. то данная функция являетсянечётной, так как f(-x)=(-x)^2R+1 + (-x)^2R (-x)= x^2R * (-x)=-x^2R* x+ -x^2R+1 + -f(x). 4)При х=0функция f(x)=0, так как 0^a = 0 приа>0. 5)При x>0функция f(x)>0.  Это следует из определения степени с рациональнымпоказателем. При нечётных а(а=2R+1, RÎN), если х<0, функция принимает отрицательные значения. Так как x^2R+1+x^2R, x^2R>0, но x<0, следовательно,произведение x^2R x<0, т.е. f(x)<0при x<0. 6)Функция является возрастающей на промежутке [0;+¥) длялюбого a>1. Из свойства степени с рациональнымпоказателем (r-рациональное число и 0<a<b,тогда a^r<b^r при r>0)следует, что x1^a<x2^a. Таким образом, меньшемузначению аргумента соответствует меньшее значение функции, т.е. функция y=f(x) возрастает на промежутке [0;¥).Докажем, что если ф- нечётное число, то функция возрастает и на промежутке (-¥;0] (рис56б).Пусть x1<x2<0, тогда x1^a< x2^aпо определению степени с целым отрицательным показателем. Т.е. данная функция возрастаетпо определению возрастающей на промежутке функции. Аналогично можно доказать,что функция y=f(x) на промежутке (-¥;0] убывает,если а – чётное целое (рис56а). 

Билет №17

1)   Пусть задана сложная ф-ция g(x)=f(kx+b).

Если ф-ция f имеет производную вточке kx0+b, то производную ф-ции g можнонайти по формуле g¢(x0)=kf¢(kx0+b).

Например найдем производную ф-ции g(x)=(7x-9)^19

g¢(x)=7*19(7x-9)^18=133(7x-9)^18

2. Правило 1. Если F-первообразная ф-ции f, а  G- первообразная ф-ции g, то F+G является первообразнаяф-ции f+g.

Док-во: Воспользуемся опр-ием первообразной, т.е. найдемпроизводную ф-ции F+G.

(F+G)¢=F¢+G¢=f+g

Правило 2. Если F- первообразнаяф-ции

f, а k –постоянная, то kF- первообразная ф-ции kf.

Док-во: Воспользуемся опр-ием первообразной, т.е. найдемпроизводную ф-ции  kF.

(kF)¢=kF¢=kf

Правило 3. Если y=F(x)-первообразная ф-ции

y=f(x), а k и b- постоянные, причем k¹0 то ф-цияy=1/k*f(kx+b) явл-ся первообразной ф-ции y=f(kx+b)

Док-во: Воспользуемся опр-ием первообразной, т.е. найдемпроизводную ф-ции y=1/k*F(kx+b)

 (1/k*F(kx+b))¢=1/k*F¢(kx+b)*k=F¢(kx+b)=f(kx+b)

Билет № 18.

1.Пусть материальная точка движенияпо координатной прямой по закону x=x(t), т.е.координата точки – известная ф-ия времени. За промежуток времени êtперемещение точки равно êx, а средняя скорость vср=êx/êt. Еслидвижение таково, что при êt®0 значение средней скорости стремится к некоторомуопределённому числу, то это число называют мгновенной скоростью(êx/êy ® vмгн,при êt®0). Но по определению производнойêx/êy ® x’ при êt®0. Мгновенная скорость определенадля любой дифференцируемой ф-ии, описывающей перемещение точки по прямой. Чтобынайти скорость движения v, нужно определить производнуюот координаты по времени, т.е. v(t)=x’(t). Пример.Координата точки, движущейся по прямой, задана формулой  x(t)=2t^2-3t+1(x(t) – перемещение в метрах, t- время всекундах). Найти скорость точки в момент времени t=2c.Имеем: v(t)=x’(t)=4t-3;v(2)=4*2-3=5 (м/с).

2. Таблица первообразных элементарных ф-ий.

Ф-ия y=x^n, n¹1 y=sin x y=cos x Общий вид первообразных (x^(n+1))/(n+1)+C -cos x+C Sin x+C Ф-ия y=e^x y=a^x Y= 1/x Общий вид первообразных e^x+C (a)/ln a+C ln x +C

       Для доказательства воспользуемсяопределением первообразной.

1)   ((x^n+1))/(n+1)+C)’= (n+1)/(n+1)*x^n + C’=x^n;

2)   (-cosx+C)’=sinx+C’=sinx;

3)   (sinx+C)’=cosx+C’=cosx;

4)   (e^n+C)’=e^x+C’=e^x;

5)   ((a^x)/(ln a)+C)=1/(ln a) *ln a+C’=a^x;

6)   (ln x+C)’=(1/x)+C’=1/x

Билет №19

1.Функция y=F(x)называется периодической, если существует такое число Т, не равное нулю, чтодля любых значений аргумента из области определения функции выполняются равенства f(x-T)=f(x)=f(x+T). Число Т называется периодомфункции. Например, y=sinx – периодическая функция(синусоиду нарисуешь сам (а)) Периодом функции являются любые числа вида T=2PR, где R –целое, кроме 0.Наименьшим положительным периодом является число T=2P. Дляпостроения графика периодической функции достаточно построить часть графика наодном из промежутков длинной Т, а затем выполнить параллельный перенос этойчасти графика вдоль оси абсцисс на +-Т, +-2Т, +-3Т,…

2. Если ф-ия u и v дифференцируемы внекоторой точке, то их сумма дифференцируема в этой же точке и производнаясуммы равна сумме производных: (u+v)’=u’+v’.Доказательство. Найдём производную суммы по определениюпроизводной.

1)   Пусть задана точка x0, êx-приращениеаргумента.

2)   2) Вычислим приращение ф-ии:

ê(u+v)=u(x0+êx)+(x0+êx)–(u(x0)+v(x0))=u(x0+êx)-u(x0)+v(x0+êx )-                                                                  v(x0)=êu+êv.

3)Найдём отношение приращения ф-ии кприращению аргумента:

ê(u+v)/êx=(êu+êv)/êx =êu /êx +êv/êx.

4) Выясним, к чему стремитсяразносное отношение при êx®0

 êu/êx+êvêx ®u’+v’ при êx®0

Билет №20

1)Изобразим  в прямоугольной системе координат графикиследующих показательных ф-ий:y=(3/2), y=2, y=(5/2), y=3

Все графики проходят через точку M(0;1).

Проведём касательные к графикам в этой точке. Измерим углынаклона касательных к оси абсцисс. У касательных к графикам ф-ии y=(3/2), y=2, y(5/2) углы с положительным направлением оси Охменьше 45°. У касательной к графикуф-ии y=3 этот угол больше 45°. Наличие у показательной ф-ии y=e (e=2.71828…) касательной, проведёной в точке M(0;1)и образующей с положительным направлением оси абсцисс угол в 45, означает, чтопроизводная в точке х0 =0 равно 1.

Натуральным логарифмом называется логарифм пооснованию е. Натуральный логарифм обозначается знаком ln, т.е.log x=ln x.

2. Если производная ф-ииположительна в каждой точке интервала, то ф-ия возрастает на этом интервале.

Доказательство: Ф-ия y= f(x) называется возрастает, если большему значениюаргумента соответствует большее значение ф-ии.

Известно, что значения дифференцируемой на интеграле ф-ии,значения производной связываются формулой Лагранжа:если ф-ия  y=f(x) дифференцируема на некоторомпромежутке, точки x1 и x2 принадлежат промежутку  (x1< x2), то на интеграле (х1; х2)найдется такая точка с, для которой выполняется равенство f’(c)=(f(x2)-f(x1))/(x2-x1).

Пусть производная ф-ии принимает положительные значения наинтеграле I, т.е. f’(x)>0.Возьмемдва знацения аргумента x1 и x2, принадлежащиеэтому интегралу, причём х1<х2. Сравним значения этойф-ии в точках х1 и х2. По формуле Лагранжда найдётся такое значения с Î (х1: х2), длякоторой выполняется равенство

F’(c)=(f(x2)-f(x1))/(x2-x1).

Из этого условия следует, что f(x2)-f(x1)=f’(c)*(x2-x1).

Заметим, что f(c)>0 (по условию), значит, f’(c)*(x2-x1)>0, т.е. разность значению аргументасоответствует большее значение ф-ии, т.е. ф-ия

y=f(x) является возрастающей.Аналогично показывается достаточное условия ф-ии. 

еще рефераты
Еще работы по математике