Реферат: Моделирование полотна АФАР моноимпульсной БРЛС

КУРСОВАЯ РАБОТА

Моделирование полотна АФАР моноимпульсной БРЛС


Содержание

Введение

1. Характеристики и параметры моноимпульсной БРЛС и её антенной системы

2. Моделирование полотна АФАР

3. Анализ результатов моделирования

Заключение

Используемая литература


Введение

Данная работа направлена на моделирование полотна активной фазированной антенной решетки (АФАР) и оценки параметров её работы в составе бортовой радиолокационной станции.

Фазированные антенные решетки являются наиболее эффективными и перспективными антенными системами, которые позволяют осуществлять быстрый обзор пространства, многофункциональный режим работы, комплексирование радиосредств, адаптацию к конкретной радиообстановке, предварительную обработку сверхвысокочастотных сигналов, обеспечение электромагнитной совместимости.

Применение АФАР для построения сканирующих остронаправленных антенн позволяет реализовать высокую скорость обзора пространства и способствует увеличению объёма информации о распределении источников излучения или отражения электромагнитных волн в окружающем пространстве, что является весомым фактором при современном уровне развития авиационного РЭО.

Дальнейшее улучшение характеристик систем с АФАР можно обеспечить, совершенствуя методы обработки сигналов, излучаемых и принимаемых антенной. Антенные системы в скорм будущем должны решать задачи получения внекоординатной информации о цели, т.е. кроме дальности и угловых координат объекта обеспечивать получение информации о его массе, размерах, параметрах движения и осуществлять распознавание образов.

Таким образом характеристики антенны предопределяют ряд основных характеристик бортовых радиоэлектронных комплексов и систем, так как разрешающая способность и точность определения угловых координат, скорость перемещения луча в пространстве, помехозашищенность, сектор обзора и т.д. зависят от характеристик антенной системы.


Характеристики и параметры моноимпульсной БРЛС и её антенной системы

Радиолокацией называется совокупность методов и технических средств, предназначенных для обнаружения различных объектов в пространстве, измерения их координат и параметров движения посредством приема и анализа электромагнитных волн, излучаемых или переизлучаемых объектами.

Радиолокация как научно-техническое направление в радиотехнике зародилось 30-х годах. Достижения авиационной техники обусловили необходимость разработки новых средств обнаружения самолетов, обладающих высокими характеристиками (дальностью, точностью). Такими средствами оказались радиолокационные системы.

Выдающийся вклад в развитие радиолокации внесли русские ученые и инженеры П.К. Ощепков, М.М. Лобанов, Ю.К. Коровин, Б.К. Шембель. В советском союзе первые успешные эксперименты обнаружения самолетов с помощью радиолокационных устройств были проведены еще в 1934/36 гг. В 1939 г. на вооружение войск ПВО поступили первые серийные отечественные радиолокаторы. Существенным шагом в развитии радиолокации было создание в 1940/41 гг. под руководством Ю.Б. Кобзарева импульсного радиолокатора. В настоящее время радиолокация одна из наиболее прогрессирующих областей радиотехники.

Получение информации в радиолокации сопряжено с наблюдением некоторой области пространства. Технические средства, с помощью которых ведется радиолокационное наблюдение, называются радиолокационными станциями (РЛС), а наблюдаемые объекты – радиолокационными целями. Типичными целями являются самолеты, ракеты, корабли, наземные инженерные сооружения.

Радиолокационные системы имеют следующие преимущества перед визуальными: работа РЛС не зависит от наличия оптической видимости и эффективна не только в дневные, но и в ночные часы, в тумане, при дожде и снегопаде. Они обеспечивают большую дальность действия и точность измерения координат цели.

Решающую роль при проектировании и эксплуатации бортовых авиационных РЛС имеют их технические характеристики, и характеристики их антенных систем.

Каждая бортовая РЛС военного назначения обладает двумя видами характеристик: тактическими и техническими.

Тактические характеристики бортовых РЛС представляют совокупность параметров, определяющих возможности их использования для решения поставленных перед самолетом задач. Эти характеристики задаются на этапе начала проектирования РЛС при всестороннем учете условий и особенностей решаемой задачи, требуемых вероятностей их выполнения, экономических, эксплуатационных и других факторов на основе методов системотехники.

Технические характеристики РЛС определяются теми инженерными решениями, которые принимаются при разработке РЛС в обеспечении тактических требований.

К тактическим характеристикам РЛС обзора земной поверхности относят:

1. Назначение и место установки РЛС: РЛС бомбометания, РЛС разведки, РЛС бокового обзора, РЛС обзора и облета препятствий, многофункциональные РЛС и т.д.

2. Зона обзора определяется как область земной поверхности, где требуется решение тактических задач с заданными характеристиками. Параметрами зоны обзора являются:

— дальность обзора, т.е. удаление зоны обзора от РСА;

— углы наблюдения, т.е. положение зоны обзора относительно вектора путевой скорости носителя РСА;

— полоса одновременного обзора по дальности;

— полоса обзора по азимуту;

— время обзора.

Максимальную дальность обнаружения Дmах объектов с определенными ЭПО (удельными ЭПО) и заданными вероятностями правильного обнаружения. При обнаружении наземных объектов и боевой техники на входе РЛС действуют внутренние шумы приемника и отражения от фона местности. Для обнаружения целей с заданными характеристиками необходимо, чтобы отраженный от целей сигнал в заданное число раз превышал уровень фона местности, а фон местности должен превышать уровень внутреннего шума приемника.

Дальность обзора ударных авиационных комплексов обычно составляет 80...160 км

Угол наблюдения для разведывательных систем задается близкий к боковому, а для ударных – любой.

Время обзора зоны. Это время, в течение которого луч антенны РЛС производит однократный обзор заданной зоны. Наиболее жёсткие требования к времени обзора заданной зоны предъявляют РЛС обхода-облёта препятствий и РЛС ударных самолётов.

3. Разрешающая способность РЛС

Разрешающая способность РЛС определяет качество радиолокационного изображения при картографировании. Кроме того, разрешающая способность в значительной степени определяет эффективность решения задач обнаружения малоразмерных целей, распознавания групповых и сосредоточенных целей, а также определения их координат и сопровождения.

Количественной мерой разрешающей способности является ширина изображения точечной цели на определенном уровне, обычно на уровне — 3 дБ от максимума, что соответствует уровню 0,5 по интенсивности изображения. Для устранения влияния искажений формы изображения вследствие ограничения сигнала, уровень сигнала выбирается таким образом, чтобы изображение находилось в линейной части амплитудной характеристики выходного устройства (процессора, индикатора).

В качестве точечной цели обычно используются уголковые отражатели, расположенные на слабоотражающем фоне для исключения влияния фона и соседних объектов. Группа отдельно расположенных отражателей, имеющих ЭПР с различием 5 дБ друг от друга, позволяет использовать их изображение для оценки линейности тракта.

4. Точность измерения координат. Она задается допустимыми ошибками (погрешностями) оценки координат и параметров взаимного движения. Величина ошибок измерения определяется назначением РЛС. В РЛС бомбометания измеряются азимут цели и дальность до нее с очень высокой точностью. В РЛС бокового обзора, предназначенной для ведения воздушной разведки, точности измерения несколько ниже.

5. Помехозащищенность

Возможность работы РЛС в условиях радиоэлектронной борьбы характеризуется скрытностью работы и помехоустойчивостью. Скрытность работы РЛС задается максимальной дальностью, на которой противник может обнаружить сигналы РЛС и определить их параметры.

Помехоустойчивость определяет работоспособность РЛС в конкретной помеховой обстановке, которая задается в виде набора методов и средств РЭБ.

К тактическим характеристикам относят также надежность, массу, габариты, ремонтопригодность и т.п.

Технические характеристики бортовых РЛС определяются теми инженерными решениями, которые принимаются при разработке РЛС в обеспечении тактических требований.

Основными техническими характеристиками РЛС обзора земли являются:

— длина волны, длительность зондирующего сигнала и вид внутриимпульсной модуляции;

— период повторения импульсов, средняя (импульсная) мощность передатчика РЛС;

— метод обзора пространства и форма ДНА;

— коэффициент шума и полоса пропускания приемника, время когерентного и некогерентного накопления сигнала;

— объем памяти, разрядность АЦП и быстродействие системы цифровой обработки;

— методы измерения координат, алгоритмы помехозащиты и тип устройства отображения.

Технические решения, принимаемые в процессе проектирования РЛС, обеспечивают выполнение тактических требований. Поэтому между техническими и тактическими характеристиками существует тесная взаимосвязь.

Обоснование, выбор и расчет технических характеристик по заданной совокупности тактических требований — сложная научно-техническая задача в силу многозначности функциональных связей и влияния статистических факторов.

При обосновании и выборе технических параметров РЛС выявляются противоречия, разрешить которые возможно путем компромиссов или поиском принципиально новых технических решений.

В классической бортовой радиолокационной станции, выполненной на традиционной антенной системе с параболическим рефлектором, сигнал передатчика через переключатель прием-передача поступает на облучатель антенны. Зеркало антенны через систему приводов механически соединено с фюзеляжем или корпусом летательного аппарата. Для стабилизации положения оси антенны при колебаниях корпуса летательного аппарата на двигатели приводов подаются специальные сигналы с системы стабилизации антенны.

Сигналы обеспечивают разворот антенны в сторону, противоположную колебаниям фюзеляжа, удерживая луч антенны неподвижно по отношению к направлению на цель.

Для создания диаграммы направленности определенной ширины зеркало антенны необходимо изготавливать с высокой точностью.

Кроме того, зеркало должно иметь достаточно высокую механическую прочность, чтобы сохранять постоянство формы поверхности при движении антенны и перегрузках во время маневра летательного аппарата.

Поворот оси диаграммы направленности в классической бортовой РЛС осуществляется механическим поворотом всего зеркала антенны.

Инженерный облик бортовой РЛС коренным образом меняется, если в качестве антенны использовать плоскую активную фазированную решетку (АФАР).В этом случае большая часть устройств, входящих в состав РЛС, размещается с одной стороны такой АФАР

Для формирования синфазного поля в раскрыве АФАР необходимо синфазно управлять отдельными усилителями, каждый из которых работает на свой излучатель. Такую возможность обеспечивает схема разводки, которую можно размещать как на обратной, так и на передней стороне АФАР. Поворот диаграммы направленности на определенный угол, а также стабилизация луча в пространстве производится не путем поворота всей антенны, а изменением фазового распределения в раскрыве АФАР с помощью фазовращателей.

Целью данной работы является моделирование полотна АФАРмоноимпульсной бортовой РЛС.

6. Моделирование полотна АФАР

1.Условия поставленной задачи.

Задачей работы является моделирование полотна АФАР авиационной бортовой РЛС со следующими параметрами:

— Длина волны БРЛС: …….………..λ=3 см.

— Диаметр антенны:…………………D=70 см.

— Расстояние между излучателями:..d=0,6λ

— Тип излучателя: открытый конец круглого волновода.

2.Расчет множителя АФАР

Из условия задачи, максимальное количество излучателей по горизонтальной (М) и вертикальной (N) осям АФАР равно:

M=21

N=21

Множитель АФАР в горизонтальной плоскости представляется в виде:

График множителя АФАР в горизонтальной плоскости представлен на рисунке 1 (а, б):

Рисунок 1 а

Рисунок 1 б

Множитель АФАР в вертикальной плоскости представляется в виде:

График множителя АФАР в горизонтальной плоскости представлен на рисунке 2(а, б):

Рисунок 2 а


Рисунок 2, б

3.Расчет амплитудного распределения АФАР

Амплитудное распределение по раскрыву решетки – равномерное, и представлено в виде:

-в горизонтальной плоскости:

График амплитудного распределения в горизонтальной плоскости представлен на рисунке 3:

Рисунок 3

в вертикальной плоскости:

График амплитудного распределения в горизонтальной плоскости представлен на рисунке 4:

Рисунок 4

Общее амплитудное распределение антенны представлено на рисунке 5:

Рисунок 5

Размещение излучателей в плоскости АФАР представлено на рисунке 6


Рисунок 6

4.Рассчет диаграммы направленности АФАР.

Диаграмма направленности в горизонтальной и вертикальной плоскости представлена в виде:

-в горизонтальной плоскости:

График диаграммы направленности в горизонтальной плоскости представлен на рисунке 7


Рисунок 7

Параметры диаграммы направленности представлены в таблице 1

Таблица 1

Параметры диаграммы направленности
2 Θ 0.5 (град.) 2 Θ 0 (град.) УБЛ 1 (дб) УБЛ 6 (дб)
6 10 -16 -27

-в вертикальной плоскости:

Параметры диаграммы направленности представлены в таблице 2

Таблица 2

Параметры диаграммы направленности
2 Θ 0.5 (град.) 2 Θ 0 (град.) УБЛ 1 (дб) УБЛ 6 (дб)
6 10 -15 -27

Общая диаграмма направленности АФАР представляется в виде:


График общей диаграммы направленности АФАР представлен на рисунке 9:

рисунок 9

Параметры диаграммы направленности представлены в таблице 3

Таблица 3

Параметры диаграммы направленности
2 Θ 0.5 (град.) 2 Θ 0 (град.) УБЛ 1 (дб) УБЛ 6 (дб)
6 10 -15 -27

Анализ результатов моделирования

В результате моделирования получена математическая модель АФАР бортовой РЛС.

Необходимо проанализировать её параметры при сканировании пространства.

1.При Θ=0 диаграмма направленности имеет вид отображенный на рисунке 9

При Θ=30 градусов диаграмма направленности имеет вид отображенный на рисунке 10

Рисунок 10

Параметры диаграммы направленности представлены в таблице 4

Таблица 4

Параметры диаграммы направленности
2 Θ 0.5 (град.) 2 Θ 0 (град.) УБЛ 1 (дб) УБЛ 6 (дб)
6 12 -15 -27

При Θ=45 градусов диаграмма направленности имеет вид отображенный на рисунке 11

Рисунок 11

Параметры диаграммы направленности представлены в таблице 5

Таблица 5

Параметры диаграммы направленности
2 Θ 0.5 (град.) 2 Θ 0 (град.) УБЛ 1 (дб) УБЛ 6 (дб)
8 15 -15 -27

При Θ=90 градусов диаграмма направленности имеет вид отображенный на рисунке 12

Рисунок 12

Параметры диаграммы направленности представлены в таблице 6

Таблица 6

Параметры диаграммы направленности
2 Θ 0.5 (град.) 2 Θ 0 (град.) УБЛ 1 (дб) УБЛ 6 (дб)
10 20 -15 -27

Видно что при больших углах отклонения главного лепестка диаграммы направленности АФАР наблюдается расширение главного лепестка диаграммы направленности АФАР и выброс интерференционных максимумов излучения и следовательно присутствует неоднозначность при определении параметров цели, но эти недостатки необходимо компенсировать путем цифровой обработки принимаемой информации о цели.


Заключение

В процессе выполнения работы по моделированию АФАР авиационной бортовой РЛС видно, что АФАР является более эффективной антенной системой, по сравнению с зеркальной антенной, позволяющей осуществлять быстрый обзор пространства, путем электронного сканирования, разрешение АФАР по угловым координатам превышает аналогичные зеркальные антенны. При этом существенно уменьшается масса и габаритные размеры бортовой РЛС, повышается надежность работы РЛС по причине отсутствия большого количества механических деталей и механизмов.

В заключение можно сказать, что бортовые РЛС с АФАР намного превосходят аналогичные РЛС с зеркальными антеннами с механическим сканированием пространства. РЛС с АФАР на один-два порядка меньше объема РЛС с зеркальной антенной. В конструкции АФАР можно размещать очень большое число маломощных генераторов. В результате при больших значениях суммарной излучаемой мощности существенно снижается вероятность пробоя воздуха, и так же снижается потребление энергии РЛС, что не маловажно в условиях ограниченности энергоресурсов летательного аппарата.


Используемая литература

1. Д.И. Воскресенский Проектирование фазированных антенных решеток.

2. И.Н. Корбанский Антенны.

3. М.А. Еськин Курсовое и дипломное пректирование по профилю факультета авиационного радиоэлектронного оборудования.

4. В.А. Конуркин Оформление текстовых документов.

еще рефераты
Еще работы по коммуникациям и связям