Реферат: Создание светодиодов и лазеров: вклад российских ученых

Носов Юрий Романович — доктор технических наук, ОАО НПП «Сапфир»

Фантастический физико-технологический прорыв конца ушедшего века вызвал к жизни новую светодиодно-лазерную революцию, она ведет не просто к «дальнейшему техническому прогрессу», но кардинально преобразует саму среду обитания человека, ее световую, информационную, культурологическую составляющие. «Полупроводниковый свет» — это десятки ежегодных конференций, множество открытий, за которыми не успевают даже специалисты, все новые сферы применения. Это также огромные транснациональные корпорации почти с двукратным ежегодным ростом объемов производства, т.е. с 1000-кратным за 10 лет! А начиналось все лишь восемь десятилетий тому назад, первые страницы этой истории читаются сегодня как увлекательнейший триллер, активными действующими лицами были и многие наши соотечественники. Кто-то оказался на вершине признания, другим повезло меньше — история не всегда справедлива даже по отношению к достойнейшим.

I

Началось с обнаружения свечения полупроводников, которое порой было столь слабым, что его приходилось рассматривать в микроскоп. В 1922 г. в Нижегородской радиолаборатории (НРЛ), тогдашнем единственном радиотехническом институте страны, О.В. Лосев [1] занялся исследованием кристаллических детекторов [2]. Восемнадцатилетний радиолюбитель, только что окончивший школу, попытался обнаружить у этих приборов способность усиливать и генерировать радиоволны, полагая, что такими свойствами должны обладать все элементы с нелинейным сопротивлением, хотя любому специалисту известно, что для этого элемент должен иметь отрицательное сопротивление. Лосев об этом не знал, начал экспериментировать и… обнаружил искомое [3]. Оказалось (это выявили в 1950-е гг.), что «механизм усиления» как бы вкраплен в некоторые природные кристаллы, оставалось лишь нащупать иголочкой активные точки. На основе этого открытия в НРЛ начали изготавливать радиоприемники и передатчики без радиоламп — это стало мировой сенсацией: брошюры о кристадине [4] появились в Европе и США. Восхищаясь оригинальностью изобретения, публикаторы удивлялись непрактичности «профессора Лосева» [5], он вразрез с традициями западного мира не запатентовал это свое изобретение, сделав его бесплатным достоянием всех радиолюбителей.

В тех первых своих экспериментах Лосев заметил и свечение из-под иглы, но не придал этому особенного значения — какая-то микроскопическая вольтова дуга, по-видимому, так и должно быть, ничего особенного. Но в подсознании это осталось. В 1927 г. он уже специально занялся свечением и установил, что это «холодное» свечение кристалла, ни дуга ни разогрев не имеют к эффекту отношения, все определяется квантовыми процессами внутри кристалла — самоучка постепенно становился профессиональным физиком.

Мир признал и это открытие Лосева, мир — но не родина. Здесь его фактически не заметили. Правда, тогдашний глава отечественной полупроводниковой школы, директор Ленинградского физико-технического института А.Ф. Иоффе взял Лосева под свое покровительство, но к пользе исследований свечения это не привело. Дело в том, что интересы академика были связаны почти исключительно с полупроводниковыми термопреобразователями и фотоэлементами [6], возможно, именно к этой тематике он намеревался приобщить и Лосева. Лосев, индивидуалист, как многие крупные личности, до конца оставался одиночкой, все его публикации без соавторов. В статьях ленинградского периода он неизменно выражал благодарность академику, а тот добился присуждения Лосеву степени кандидата физико-математических наук без защиты и без вузовского диплома, представлял его сообщения в «Доклады» Академии наук. Но Лосев, фактически работавший в Физтехе и сблизившийся с его молодой порослью (он подружился с В.П. Жузе), так и не был введен в штат и, когда грянула война, не был включен в список эвакуируемых сотрудников [7].

Житейская судьба Лосева не была счастливой [8]. В Нижнем он начинал рассыльным и первое время ночевал прямо на предчердачной площадке в здании Радиолаборатории; когда в период кристадина стали приходить письма с обращением «Dear professor», он все еще не каждый день был сыт [9]; в 1928 г. после закрытия НРЛ он, как и другие ее сотрудники, оказался в Ленинграде, но постоянного места работы у него не было, всюду на птичьих правах; перед войной стал ассистентом на кафедре физики Мединститута и в первую страшную блокадную зиму 22 января 1942 г. скончался от истощения на 39-м году жизни. Место захоронения Олега Владимировича Лосева неизвестно.

Открытия, как поэмы и симфонии, живут самостоятельно, независимо от судеб их авторов. Рождение «свечения Лосева» пришлось на счастливую для отечественной физики пору: провозглашение «массового похода революционной молодежи в науку» подкреплялось материальными вложениями и значительностью задач, то было время, когда юные гении Г.А. Гамов, К.Д. Синельников, Л.Д. Ландау могли беспрепятственно ехать на стажировку к Бору и Резерфорду, а публикации в западных журналах были нормой [10]. Уже с 1930 г. лосевские статьи по свечению цитируются педантичными немцами, и к середине 1930-х гг. понятие «Lossev Licht» становится на Западе ходовым. А дальше — тишина на долгие 15 лет. Полупроводниковая наука и технология пребывали в зачаточном состоянии, для применения «свечения Лосева» не было объективных условий. На талантливую молодежь начал воздействовать «магнит попритягательней» — нейтронная физика. А с 1939-1940 гг. все подчинила себе военная тематика.

Лишь в начале 1950-х гг. вновь обратились (сначала в США, потом у нас) к карбиду кремния (именно в нем Лосев наблюдал самое яркое свечение), но стимулировалось это транзисторными проблемами: первые транзисторы, изготавливаемые из германия, не работали при повышенных температурах (что особенно драматично (sic! — V.V.) — проявилось в Корейской войне 1950-1953 гг.), и Пентагон излил золотой дождь на решение этой проблемы. Вскоре альтернативой германию стал кремний и закрепился навсегда, а на карбиде кремния транзисторы изготовить не смогли, но — не отказываться же от дарованных денег — потихоньку от военных занялись свечением и заметно преуспели. Естественно, вспомнили и Лосева, с цитирования его статей, в том числе и русскоязычных, начиналась тогда каждая публикация, было дано теоретическое обоснование его открытию и определено место Лосева в истории как первооткрывателя инжекционной люминесценции полупроводников — явления, составляющего основу принципа действия светодиодов и лазеров. Круг исследований начал стремительно расширяться, появились новые, более эффективные полупроводники, и вскоре приступили к созданию светодиодов.

Оказалось, однако, что историю «свечения Лосева» кое-кто непрочь и переписать. Готовясь к 200-летию США (1976), американские историки науки [12 ]обнаружили, что свечение карборунда наблюдалось еще в 1907 г. [13], и даже такой серьезный исследователь, как Е. Лёбнер, долгие годы проживший в Москве, тщательно изучивший наследие Лосева и еще в 1973 г. безоговорочно признававший его приоритет, теперь стал говорить лишь о переоткрытии им электролюминесценции [14]. В упомянутом письме в редакцию Г.Дж. Раунд толково рассказывает о свечении детекторов, но из его краткого сообщения (150 слов) неясно, была это инжекционная люминесценция или другое явление, также исследованное Лосевым, значительно менее эффективное и не имеющее практического значения. Резонанса заметка Раунда не получила, сам он, насколько известно, к «любопытному явлению» более не возвращался и, дожив до 1966 г., ни на какой приоритет не претендовал. Кстати говоря, и Лёбнер определяет имя Раунда в первооткрыватели электролюминесценции со множеством оговорок: «по-видимому, можно считать», «вероятно», «однако» и проч. «Страсти по Раунду» в истории техники это прелюдия той массированной мифологизации общей истории, которая позднее начала осуществляться на Западе очень широко (как, например, в кинопритче о солдате Райане, «выигравшем» Вторую мировую войну).

* * *

Историку науки очевидно, что открытие нового эффекта это нечто большее, чем просто факт его обнаружения. Кроме этого первого начального события, обычно случайного, «алгоритм открытия» должен включать [15]:

многократное воспроизводимое его наблюдение;

исследование с целью выявления природы явления;

объяснение, хотя бы как попытка;

подтверждение истинности теми или иными практиками;

публикация и признание обществом.

И при этом окончательное суждение история выносит лишь спустя некоторое время, достаточное для осмысления произошедшего [16].

Переходя к общей оценке научной деятельности Лосева, повторимся, что открытие им инжекционной люминесценции в полной мере соответствует описанному алгоритму, чего нельзя, по нашему мнению, распространить на его же открытие кристадина. Здесь мы имеем дело лишь с обнаружением и использованием эффекта; ни исследования, ни приближения к пониманию механизма явления не произошло [17]. В этой связи утверждение Лебнера, что изобретатели транзистора Дж. Бардин и У. Браттейн переоткрыли в 1947 г. эффект усиления, открытый Лосевым в 1922 г., несостоятельно. Даже с большой натяжкой Лосева нельзя считать предтечей изобретения транзистора, — как говорится, чужого нам не надо.

Другое дело, что если бы в конце 1930-х гг. или сразу же после войны перед ним была сформулирована проблема полупроводникового усилителя и если бы жизнь его не оборвалась так рано, то с большой вероятностью транзистор мог бы родиться в России — залогом тому лосевская интуиция, самоотдача, изощренность экспериментатора.

II

Итак, к началу 1950-х гг. разобрались со свечением полупроводников, однако тогда же поняли, что ни карбид кремния, ни германий, ни кремний для светодиодов не подходят. Нужен похожий на них полупроводник, но совсем другой, и такого в природе нет. Так в традиционной цепочке «физика (эффект + теория) — материал — изделие (конструкция + технология + применение)» исследования переместились на второе звено. Новые полупроводники были нужны всей электронике, правда, в то время транзисторы полностью удовлетворились кремнием, а на роль «главного заказчика» вышла инфракрасная техника, которая все эффективнее демонстрировала военным свои чудодейственные возможности, в первую очередь: противосамолетные тепловые головки самонаведения [18] и приборы ночного видения, включая тепловизоры [19].

В 1952-1953 гг. Генрих Велькер из Мюнхена опубликовал фундаментальную статью [20], в которой обосновывалась возможность создания целого класса искусственных полупроводников на любой вкус, соединяя парами специально подобранные металлы, образующие интерметаллические соединения. Но за два года до этого, в 1950 г. наша соотечественница Н.А. Горюнова уже предсказала «полупроводниковость» некоторых интерметаллов. Отталкиваясь от химических представлений об изоморфизме, кристаллохимических группах, видах валентной связи, она, пока еще интуитивно, перебрасывала мостик к электрофизическим свойствам синтезируемых веществ. Тогда же на двух составах это было подтверждено экспериментально [21]. Но в первооткрывателях ее имя на Западе ни тогда, ни позднее не появилось, только Велькер, безоговорочно и в единственном числе. Может быть, так и есть, и мы имеем дело с повторением ситуации Лосев — Раунд? Ведь в предыдущем разделе обосновывалось (хочется надеяться, убедительно), что не обязательно первый, кто подметил новое, должен зачисляться в авторы. Да, не обязательно. Но это не случай Горюновой.

Нина Александровна Горюнова принадлежит к ярчайшим представителям военного поколения, закаленного в трудностях, целеустремленного и волевого. Когда в 1946 г. она появилась в Физтехе, у нее за плечами были фабрично-заводское училище, химфак Ленинградского университета, два года работы по распределению в заводской лаборатории, предблокадные ленинградские будни, эвакуация в далекий Хабаровск. По возвращении в Ленинград ей уже 30, надо растить четырехлетнего сына и годовалую дочь. Но была в этой русской женщине небесная искра — она поступает в аспирантуру к А.Ф. Иоффе!

Академик дал ей вполне защищаемую и не слишком перспективную тему из числа тех, когда надо закрыть очередную клеточку в мозаике необследованных веществ, которые — а вдруг? — могут оказаться полезными полупроводниками. «Серое олово» — одно название могло навести тоску, но она раскрутила его на свой лад. Могли же Шерлок Холмсы по ниточке и обрывку газеты воссоздавать личность человека, а заодно и всю его родословную. За подсказками по методологии обобщений она обращается не к кому-нибудь, а к Менделееву, Курнакову, Гольдшмидту [22]; в практической деятельности использует свой, ставший потом «фирменным», напор: пробивается в запасники Эрмитажа, где ей разрешают с потемневших старинных оловянных потиров наскрести пригорошню «оловянной чумы», это и есть серое олово.

Предвидение академика подтвердилось: серое олово и впрямь оказалось полупроводником, но практически бесполезным. Зато на нем Горюнова угадала тот рецепт, по которому можно было синтезировать любые интерметаллы. Первое сообщение об этом — ее кандидатская диссертация (1950), но диссертации часто остаются незамеченными. В октябре того же года — доклад на Всесоюзном совещании в Киеве, отмеченный патриархами А.Ф. Иоффе [23] и В.Е. Лашкаревым, в 1951 г. появляются ее публикации в «Докладах...» и «Известиях...» Академии. Это читают на Западе, но стоит ли им ожидать чего-то значительного из невосстановленной после военной разрухи страны? А Горюновой не до утверждения приоритетов, она торопится: синтезирует все новые соединения, находит ключик к смешиванию трех, четырех (и сколько хотите еще) компонентов.

Ее энергия, оптимизм, профессионализм, весь ее облик притягательны [24], она щедра в раздаривании идей — «школа Горюновой» распространяется на многие научные центры страны, с ней стремятся познакомиться знаменитая Генриетта Родо из Франции, английский профессор К. Хилсум… В 1968 г. появляется ее итоговая монография, где сделана попытка предложить периодическую систему полупроводниковых соединений [25]. В новых идеях у нее тоже нет недостатка, но… Так часто судьба бывает подчеркнуто несправедливой по отношению к лучшим: Нина Александровна умерла от тяжелой болезни 31 января 1971 г., едва достигнув 54 лет.

На одном из международных конгрессов еще при ее жизни Нобелевский лауреат Н.Н. Семенов отметил: «Работы Горюновой совершают… переворот в неорганической химии». Как видим, на ситуацию Лосев — Раунд совсем непохоже, по «горячим следам» о приоритете Горюновой неоднократно высказывались такие авторитетные ученые, как Б.И. Болтакс, Б.Т. Коломиец, А.И. Губанов, позднее — Ж.И. Алферов, причем очень активно и на представительных международных форумах.

Было ли признание всеобщим? Длительное время Горюнова работала у Д.Н. Наследова, он возглавлял единственную тогда в Физтехе полупроводниковую лабораторию, где многие вполне сложившиеся ученые довольствовались секторами или группами. Профессор Наследов (1903-1975) был блестящим лектором, педагогом, организатором: руководить аспирантами он начал с 25 лет, и в какие-то моменты их одновременно бывало у него более 15; в 28 — он заместитель директора; позднее — много сил и внимания уделял организации научных центров в республиках СССР. Его отличали склонность к обобщениям, обстоятельность и неспешность, так вплоть до 1957-1958 гг., судя по публикациям, он сохранял заметный интерес к исследованиям селена, полупроводника, бесперспективность которого всем в мире уже была очевидна.

И вот рядом с ним Горюнова — «лед и пламень». Искрометная одержимость, упоение созданием новых веществ, их «здесь и сейчас» своими руками она синтезировала в вытяжном шкафу. Конечно, в ее ранних исследованиях не было законченности и строгой доказательности, их тогда и не могло быть по сути дела. Возможно, поначалу она не очень-то уверенно чувствовала себя в среде физиков, которые иронизировали: «если один грязный металл соединить с другим грязным, то что, кроме грязи, мы получим?» В те годы требование суперчистоты всех компонентов полупроводниковой технологии уже фактически стало аксиомой. Загипнотизированные совершенством германиевых и кремниевых кристаллов физики недоверчиво поглядывали на очередной слиточек, извлеченный Горюновой из ампулы: «а полупроводник ли это?» (Характерно в этой связи название доклада: «Изучение электропроводности полупроводников и интерметаллических соединений ...».)

Пока иронизировали и сомневались, время утекало, приоритет Горюновой таял, фактически почти не обозначенный: без всестороннего исследования синтезированных образцов их значимость была мизерной, только физик мог дать оценку тому, что «сварил» химик. Трудно быть пророком в своем отечестве, в нашем — в особенности [26].

Разумеется, лаборатория Наследова все же занялась исследованием интерметаллов [27], причем одной из первых в мире, но все же не первой. Стартовой отмашкой послужила упомянутая выше статья Велькера. Первая публикация Наследова по новой тематике, появившаяся в 1956 г. в соавторстве с очередным его аспирантом, цитировала только Велькера «со товарищи» и «примкнувших к нему» американцев — эта команда уже заметно вырвалась вперед. В конце статьи отмечалось, что «исследованные материалы были синтезированы Н.А. Горюновой и В.С. Григорьевой», и — благодарность, но не соавторство. Эта практика утвердилась на дальнейшее: из более чем 400 работ Наследова, лишь 3 или 4 идут в соавторстве с Горюновой. Работы Горюновой не отмечены ни Ленинской, ни Государственной премиями — традиционными научными наградами тех времен. Она не стала и членом Академии наук — не сложилось.

В 1956 г. о физтеховских исследованиях новых полупроводников Наследов доложил на представительной международной конференции в Гармиш-Партенкирхене, там прозвучало и имя Горюновой, но вряд ли было услышано: мир уже определился с приоритетом [28].

В 1976 г. вышли в свет воспоминания Г. Велькера о делах четвертьвековой давности, в них признанный родоначальник нового полупроводникового направления раздает «всем сестрам по серьгам». Проникновенно и интересно описывает свой путь к открытию, это естественно; подробно и подчеркнуто благожелательно анализирует исследования американцев, начавшиеся с 1953 г., наделяя некоторые их результаты отметкой «впервые»; вскользь, одним абзацем сообщает о «независимой работе в Советском Союзе», о том, что в 1950 г. Горюнова предсказала полупроводниковость новых соединений, при этом цитирует лишь наследовский доклад 1956 г. А ведь в 1976 г. 64-летний патриарх заведомо знал о многочисленных статьях и монографиях Горюновой, подтверждавших неслучайность ее приоритетного сообщения 1950 г. Но напрашивающееся «впервые» из его уст так и не прозвучало.

Велькер не монумент, у него своя человеческая история, и, возможно, он испытывал обиду на несправедливость судьбы. В 1933 г. он начал работать в Мюнхене у знаменитого А. Зоммерфельда, к 27 годам он — «Doktor habilitiert», т.е. «полный доктор», и начинает исподволь подходить к идее интерметаллических полупроводников. Впереди блистательное будущее, но разразилась война, и ему пришлось заниматься детекторами для радаров, а в 1947 г. из разрушенной Германии на несколько лет законтрактоваться во Францию ради хлеба насущного. От «дела жизни» война отбросила его на 7-10 лет, возможно, подсознательно на столько же лет раньше он «числил» и свой приоритет и не считал себя морально обязанным уступать его кому-нибудь [29]. Несомненно на его мироощущение как немца наложила отпечаток национальная трагедия. Послевоенное унижение побежденной нации у немецких ученых дополнялось еще и горьким осознанием научно-технического проигрыша американцам, утратой (и ясно, что безвозвратной) своего былого подавляющего превосходства [30], в чем они не хотели признаваться даже самим себе [31]. Поколению, жизнь и смерть которого определяли американские летающие крепости и танки «Шерман» [32], пришлось научиться улавливать тончайшие нюансы заокеанских пожеланий-команд. Поэтому в номере американского «IEЕЕ Transactions» (1976), где были помещены воспоминания Велькера об открытии интерметаллических полупроводников, не могло быть и речи о каком-либо советском приоритете — то был пик холодной войны, Конгресс только что ввел ограничения на свободу торговли с СССР (1974).

Сегодня в исторической ретроспективе, очищенной насколько возможно от политических наслоений, видно, что работы Г. Велькера и Н.А. Горюновой в их совместном прочтении дали науке совокупность определяющих физических и химических представлений об интерметаллических полупроводниках [33] — в этом суть их общего приоритета.

III

В начале 1960-х гг. большинство из тех, кто занимался свечением полупроводников, устремились к созданию лазера. Возникшая в 1953-1955 гг. квантовая электроника [34] в качестве своего главного вывода содержала утверждение о том, что может быть разработан принципиально новый источник излучения с узконаправленным суперинтенсивным когерентным [35] лучом света. Правильнее было бы сказать, что это являлось не следствием, а предназначением квантовой электроники. Ничего подобного в природе не было. Ученые оказались вплотную к тому, чтобы «преступить грань», и возможность совершить это первым — возбуждала.

Классическая квантовая электроника исследовала радиоволны, возникающие в газах, поэтому, задумываясь о свете, полагали, что надо лишь подобрать какой-то другой подходящий газ; Ч. Таунс и А. Шавлов (его шурин) даже указали, где искать [36]. История, как водится, раскрутила сюжет по-своему: первый лазер сделал (15 мая 1960 г.) из рубинового стерженька, наподобие карандаша, американец Теодор Мейман. Человек независимых суждений и непредсказуемых поступков (он мог, например, бросить все и на полгода отправиться в кругосветное путешествие), высмеивающий преклонение аспирантствующего молодняка перед авторитетом профессоров, Мейман с беззаботностью победителя не исполнил ритуальный реверанс в сторону предсказателей и получил адекватную ответную реакцию: к его презентации (7 июля 1960 г.) отнеслись сдержанно, не спеша признавать реальность прорыва в лазерный век, а острословы утверждали, что он «нашел решение, для которого еще надо найти проблему» [37]. Через полгода был создан газовый лазер, все как бы встало на свои места, с возмутителем спокойствия постепенно смирились и отвели ему в истории место создателя первого лазера, но первого в ряду других, в какой-то мере тоже первых [38].

Летом 1962 г. началась стремительная атака на полупроводниковый лазер — все понимали, что именно он станет действительно массовым и сможет кардинально преобразить облик новой электроники. Еще в 1958-1960 гг. к проблеме начали исподволь подходить в нашем Физическом институте им. П.Н. Лебедева АН СССР, пожалуй, здесь был наиболее подходящий для этого коллектив [39]. К 1961 г. сформулированы теоретические предпосылки создания полупроводникового лазера [40], неясно было лишь, какой именно полупроводник даст результат (повторение меймановской ситуации). Однако в конце июля 1962 г. американцы определились — арсенид галлия; отныне счет пошел на недели и дни, и в сентябре-октябре лазерный эффект получили сразу в трех лабораториях, а первой оказалась группа Роберта Холла (24 сентября 1962 г.).

Позднее он вспоминал, что в разгар событий они узнали о статье Д.Н. Наследова, датированной январем 1962 г., в ней содержался намек на обнаружение лазерной генерации; по-видимому, у русских уже есть лазер, и они вот-вот о нем объявят, значит, надо еще прибавить оборотов. «Синдром спутника» [41], да еще подкрепленный гагаринским полетом (1961), действовал безотказно. Правда, вскоре американцы поняли, что лазерной генерации в этой работе не было и быть не могло, так как не соблюдались некоторые обязательные для этого условия (авторы и сами от такой интерпретации своих экспериментов фактически благоразумно отказались), но этот посыл из России сыграл свою роль в ускорении создания лазера.

Научный мир был хорошо разогрет лазерными страстями, так что у нас в стране первые образцы были изготовлены в ФИАНе (А.П. Шотов) через несколько недель после публикации Холла, еще через месяц — в НИИ-333 (В.И. Швейкин) [42], а к началу 1963 г. началась подготовка их полупромышленного производства на заводе «Старт» с участием НИИ-311 (будущий НИИ «Сапфир»). Увы, дальнейшее показало, что созданные с таким старанием и надеждой полупроводниковые лазеры крайне недолговечны и в качестве коммерческого изделия перспективы не имеют, как у нас, так и у американцев. Через несколько лет безуспешных исследований ситуация стала казаться неразрешимой.

Счастливое продолжение лазерной истории связано с гетероструктурами, здесь отечественный вклад и приоритет получили столь очевидное мировое признание (Ж.И. Алферов, Нобелевская премия, 2000), что в каких-то дополнениях нет необходимости. Разве лишь несколько штрихов из самого раннего периода.

Основополагающую заявку на изобретение подал Алферов (совместно с Р.И. Казариновым, теоретиком) всего лишь через 5 месяцев после публикации Холла. По сути еще и обычных лазеров не было, их совсем не распробовали. Несколько лет группа Алферова билась над поиском подходящего для реализации материала, а нашла его, в некотором смысле полуслучайно, в соседней лаборатории у Н.А. Горюновой, где этот сложный трехкомпонентный полупроводник был изготовлен впрок «на всякий случай». Гетеролазер на этом материале был создан в канун 1969 г., а приоритетной датой на уровне обнаружения лазерного эффекта является 13 сентября 1967 г. [43 ]

Вернемся к началу 1960-х гг. Фактически каждый, кто исследовал свечение полупроводников, так или иначе изготавливал светодиод, поэтому искать первооткрывателя в каком-то абсолютном смысле бесперспективно. Если же повести речь не об эффекте, не о научном достижении, а об изделии, то определяющим критерием факта его существования является наличие коммерческого производства. Сугубо прагматически: если изделие используют и покупают, то оно существует (и наоборот).

В упомянутой лазерной гонке «побочным» результатом стали красные светодиоды, о начале их мелкосерийного производства фирма «Дженерал Электрик» объявила в широкой печати 28 ноября 1962 г., а спустя четыре десятилетия их создатель Ник Холоньяк удостоен премии «Глобальная энергия». Заметим, что в том же 1962 г. у нас в НИИ-311 уже было развернуто производство светодиодов другого вида — на основе карбида кремния — фактически это означало развитие идей Лосева на более совершенной технологической основе [44]. И хотя эти светодиоды отличались низкой эффективностью, но благодаря их безинерционности им было найдено важное применение в ядерной физике для калибровки счетчиков частиц. Их производство в нарастающих объемах продолжалось много лет, в том числе и для аппаратуры оборонного назначения; с течением времени карбидокремниевые светодиоды уступили место другим, более эффективным. К сожалению, публикации об этих первых коммерческих светодиодах, не только в СССР, но и в мире, появились лишь через несколько лет после начала их производства (1962), причем в узковедомственных изданиях, поэтому вопрос об отечественном приоритете в создании светодиода и не ставился.

Славное двадцатилетие 1950-1970 гг. стало решающим периодом в истории оптоэлектроники и ее основы — лазеров и светодиодов. Ученые двух великих стран — США и СССР — фактически общими усилиями совершили колоссальный прорыв, который привел (совместно с транзисторной микроэлектроникой) к рождению новой электроники, кардинально изменившей нашу жизнь к концу XX века. И по большому счету ни идеологическое противостояние наших стран, ни железный занавес, ни режим секретности препятствием не стали — решающими факторами оказались лишь желание и воля.

Примечания

1 О жизни и деятельности Лосева см.: Лосев О.В. У истоков полупроводниковой техники. Л.: Наука, 1972; Нижегородские пионеры советской радиотехники / Сост. Б.А. Остроумов. М.; Л.: Наука, 1966; Центральная радиолаборатория в Ленинграде / Под ред. И.В. Бренева. М.: Сов. Радио, 1973; Остроумов Б., Шляхтер И. Изобретатель кристадина О.В. Лосев // Радио. 1952. № 5; Новиков М.А. Олег Владимирович Лосев: пионер полупроводниковой электроники // ФТТ. 2004. Т. 46. № 1.

2 Детектор — это полупроводниковый кристаллик с прижатой к нему металлической иглой. Выпрямляющее действие такого точечного контакта открыл Ф. Браун (1874), будущий Нобелевский лауреат за радиосвязь (совместно с Г. Маркони); он же впервые использовал детектор для радиоприема.

3 «Благословенны не знающие, но уверовавшие», — нередко подтверждается и в науке. «Дорога к научному открытию [...] не обязательно требует глубоких.познаний [..] неофит часто имеет преимущество перед знатоком именно в силу своего невежества, так как [...] не представляет всех сложных причин, по которым бессмысленно даже поставить данный эксперимент», — это из нобелевской речи А. Джайвера (см.: Лауреаты Нобелевской премии. Энциклопедия. М.: Прогресс, 1992. С. 409). Человек реальной жизни, разнорабочий, капрал, механик по образованию, лишь в 27 лет приобщившийся к физике, он через пару лет достиг выдающихся результатов, и они поставили его в один ряд с двумя другими нобелевцами 1973 года: рафинированными университетчиками Б. Джозефсоном и Л. Эсаки.

4 Звучное и адекватное название открытия/изобретения — половина успеха и почти всегда — пропуск в историю, на Западе это понимают лучше нас. Название кристадин, прославившее изобретателя, за Лосева и его окружение придумали немцы. См.: Lossev, О. Der Krystadin // Zeitschrift f. Fernmeldetechnik. 1925. № 9. S. 132.

5 Ему в ту пору было 22-24 года, он только начал посещать лекции в Нижегородском университете, но так и не доучился до диплома.

6 Во время войны физтеховские преобразователи, одетые на керосиновую лампу, обеспечивали питанием радиоприемники в глухих партизанских землянках. Но сосредоточившись на одном, просмотрели транзисторы: спустя 7 лет после их изобретения академик лишь вскользь упоминает о «твердых усилителях» в ряду других достижений, а свечение полупроводников вообще отодвигает на 16-е место (Иоффе А.Ф. Полупроводники в современной физике. Л.: Изд. АН СССР. 1954).

7 Лосев остался в Ленинграде, чтобы подготовить к публикации одну из работ, — в начале войны многие не смогли оценить масштабность надвинувшейся катастрофы. Но вскоре он все понимает: «Жалею, что я не эвакуировался… из Ленинграда, разумеется, следовало уехать с самого начала» (из письма В.П. Жузе 17 ноября 1941 г. см.: Нижегородские пионеры советской радиотехники… С. 194). Его могли вывезти и позже, но никто из руководителей этим не озаботился. Нижегородский исследователь М. А. Новиков обнаружил письменное обращение Лосева в дирекцию института с просьбой об эвакуации и с резолюцией «мест нет».

8 В представлении и терминах обывателя. Человека, живущего наукой, только наукой, и достигшего двух ее вершин, можно ли назвать несчастливым? Подробнее см.: Носов Ю. Р. К истории открытия О. В. Лосевым электролюминесценции полупроводников // Электронная промышленность. 2004. № 1. С. 69-77.

9 Голодные обмороки случались и у «раннего» И. В. Курчатова, такое было время.

10 См. например: Колчинский Э. И. «Культурная революция» и становление советской науки (1928-1932) // Наука и кризисы. СПб.: ИИЕТ РАН, 2003. С. 577-664.

11 Эту ситуацию середины 1930-х гг. образно охарактеризовал будущий академик-ядерщик Г. Н. Флеров: «Я оставил полупроводники, ибо понял, что там науки еще нет — кухня! Да притом без возможности пробовать суп до того, как он сварился» (цит. по: Игорь Васильевич Курчатов в воспоминаниях и документах. М.: ИздАТ, 2003. С. 339).

12 В США «история науки… получила значительную поддержку благодаря холодной войне». См.: Лесли С. В. Наука и политика в Америке во времена холодной войны // Наука и кризисы… С. 940.

13 Round, H. J. A note on carborundum // Electr. World. 1907. Vol. 49. P. 399.

14 Loebner, E. E. Subhistories of the light emitting diode // ШЕЕ Trans. 1976. Vol. ED-23. № 7. P. 675.

15 Носов Ю. Р. Из истории полупроводниковых светодиодов // Труды X Юбилейной годичной конференции ИИЕТ. 2004. С. 668-670.

16 Из классики: спектральное разложение солнечного света неоднократно наблюдалось и до Ньютона; реакцию стрелки компаса на протекание тока по проводнику первым заметил студент на лекции Эрстеда; но в историю науки эти открытия вошли под именами Ньютона и Эрстеда.

17 Отчасти и по этой причине «кристадинный бум» угас в течение нескольких лет.

18 В 1944-1945 гг. они обеспечили американской ПВО практически стопроцентное уничтожение японских самолетов-камикадзе. См. например: Пролейко В. М. Военные и информационные аспекты развития отечественной электроники // Труды X Юбилейной годичной конференции… С. 671-673.

19 Подобно тому, как «битву за Британию» (1940) выиграли радары, окончание Вьетнамской войны и Парижский мир (1973) обеспечили тепловизоры: к ним не сумели подобрать противодействие, аналогично тому, как это было сделано в отношении радаров, и американские ВВС начали нести слишком значительные потери. В этой и некоторых последующих ремарках отчетливо видно, как тесно переплетаются в современном мире общая история с историей электроники (Носов Ю. Р. США и новейшая история электроники // США/Канада. 2003. № 9. С. 87-98).

20 Welker, H. Uber neue halbleitende Verbindungen // Zeitschrift Naturforschung. 1952. Bd. 7a. S. 744-749; 1953. Bd. 8a. S. 248-251.

21 Горюнова Н. А., Обухов А. П. Серое олово — электронный полупроводник; Блум А. Н., Мокровский Н. П., Регель А. Р. Изучение электропроводности полупроводников и интерметаллических соединений в твердом и жидком состояниях — доклады на совещании в Киеве 14-21 октября 1950 см. информацию в: ЖТФ. 1951. Т. XXI. Вып. 2. С. 231. Обе работы, кандидатская — Горюновой и докторская — Регеля, шли под патронажем А. Ф. Иоффе, настойчиво искавшим связь между структурными и электрофизическими свойствами материалов.

22 Н. С. Курнаков (1860-1941) — русский металловед; В. М. Гольдшмидт (1888-1947) — норвежский геохимик.

23 Свой доклад он закончил заклинанием: «Руководящие указания партии, широкое использование метода критики и самокритики оградят нас от заблуждений и грубых ошибок» и славословием в адрес «величайшего гения человеческой мысли и творческих достижений». В условиях бесчисленных кампаний по закручиванию гаек (см.: Кременцов Н. Л. Советская наука и холодная война // Наука и кризисы… С. 830-907) это уже не спасало — вскоре его отстранили от директорства, причем осуществили это с остроумным изяществом: просто заколотили и опечатали дверь из квартиры академика (в левом крыле институтского здания) в сам Физтех.

24 Автору довелось мельком видеть Н. А. Горюнову в Физтехе в начале 60-х гг.; впечатление: сочетание женственности и стремительной решимости. О жизни Н. А. Горюновой см.: Кудесница алмазоподобных полупроводников / Под ред. А. М. Андриеша. Кишинев, Штиинца, 1987.

25 Горюнова Н. А. Сложные алмазоподобные полупроводники. М.: Сов. Радио, 1968.

26 Невольно напрашиваются исторические сопоставления. Ни Д. И. Менделеев, ни А. С. Попов, ни П. Н. Лебедев не выдвигались на Нобелевскую премию ни одним из отечественных ученых, хотя возможность кому-то и предоставлялась (Блох А. М. Советский Союз в интерьере Нобелевских премий. СПб., Гуманистика, 2001).

27 В период повального увлечения кремнием это был смелый шаг, а с учетом того, что от нашей науки тогда требовали быстрой промышленной отдачи, — мужественный шаг — в интерметаллах все было туманно и быстрого выхода в практику не ожидалось.

28 Вновь напрашивающееся сопоставление: приоритет О. В. Лосева в изобретении кристадина обусловлен в значительной степени и тем, что его руководитель проф. В. К. Лебединский всячески подталкивал талантливого юношу к оперативным публикациям в отечественной и зарубежной периодике. У «ранней» Горюновой таких публикаций не оказалось.

29 И у Горюновой война «украла» 7 лет. Вообще говоря, проблема приоритета несущественна для развития науки (но не для истории науки).

30 Из 77 предвоенных (до 1945 г.) Нобелевских премий по физике и химии немцы участвовали в 27 (35%), что превышает участие англичан и американцев вместе взятых (32%).

31 Уолкер М. Наука в послевоенной Германии // Наука и кризисы… С. 908-922.

32 Несомненно, этой грохочущей реальностью навеяно обращение М. Хайдеггера к философии техники (1949); неудивительно, что именно тогда, не прошедший денацификацию и уволенный из Фрейбургского университета, он пришел к своей грустноватой концепции «постава» (см. например: Новая технократическая волна на Западе. М., Прогресс, 1986). А ведь в последней предвоенной лекции (1938) он воспарял к философии «новоевропейской картины мира» — исторические реалии «обламывают» и философа.

33 Достижение, более чем достойное Нобелевской премии, но так и не увенчанное ею.

34 Одно из величайших открытий XX в., и мы горды тем, что его признанными авторами являются Н. Г. Басов и А. М. Прохоров (Нобелевская премия 1964 г. совместно с американцем Ч. Таунсом) — об этом много написано. Отвлекаясь от чисто научных аспектов, заметим, что эта премия стала и символическим рукопожатием двух стран, стремившихся тогда сгладить недавнее противостояние (Западный Берлин, Куба).

35 Особое свойство света, на бытовом уровне близкое к чистейшей одноцветности, принципиально для многих применений. Однако, в чистом естественном цвете намешано множество полутонов не всегда различимых глазом: «просто человек» выделяет до 100-150 оттенков, художник — до 3000, физические приборы — десятки миллионов.

36 Schawlov, A., Townes, Ch. Infrared and optical masers // Phys. Rev. 1958. Vol. 112, № 6. P. 1940-1949. Статья признана «классической», хотя ее практические рецептуры в дело не пошли.

37 Иронизировали зря: от изобретения Меймана пошли твердотельные лазеры, нашедшие широчайшее применение, кроме всего — в высокоточном оружии и в гигантских установках термоядерного синтеза.

38 Жестко, но справедливо. Чем старательнее мы пытаемся выяснить, кто был первым, тем более неопределенным оказывается ответ; кажется, это общее правило. В 1938-1940 гг. наш соотечественник В. А. Фабрикант продемонстрировал (на грани различимости) лазерное усиление в газах, в 1951 г. он с коллегами подал соответствующую заявку, по которой получил авторское свидетельство (1959) и диплом на открытие (1964). (См. например: Светотехника. 1998. № 1. С. 41-47.) В ноябре 1957 г. некто Г. Гоулд, американец, подал заявку на «лазерное усиление с оптической накачкой», через 20 лет Патентное ведомство США выдало ему патент, но к тому времени все награды за лазер уже раздали (Электроника. М., Мир, 1980. С. 121). Сильное забегание вперед, да еще вне общего строя, как правило, оборачивается личной драмой и науке, в особенности прикладной, мало что дает.

39 На высшем мировом уровне работали лаборатории Н.Г. Басова и А.М. Прохорова, родоначальников квантовой электроники, и лаборатория полупроводников Б.М. Вула.

40 Положения основополагающей статьи (Басов Н.Г., Крохин О.Н., Попов Ю.М. Получение состояний с отрицательной температурой р-n-переходах вырожденных полупроводников // ЖЭТФ. 1961. Т. 40. № 6. С. 1879) через полгода повторил француз М. Бернард в англоязычном журнале (вполне корректно, со ссылкой на наших), и американские лазерщики-практики цитировали уже именно Бернарда — вот так и «утекают приоритеты» (один из каналов).

41 Запуск первого советского спутника (4 октября 1957 г.) породил в США комплекс неуверенности в своем технологическом превосходстве. Тогда в течение нескольких месяцев посредством долларовых вливаний они переключили миллион(!) исследователей на военную тематику, и один из них, Дж. Килби, изобрел интегральную схему — так в 1958 г. родилась микроэлектроника. Но страх, что русские могут преподнести сюрприз, остался надолго.

42 Созданный по постановлению ЦК КПСС и СМ СССР № 285-137 от 24.03.1962 г. этот НИИ (будущий «Полюс») был ориентирован на твердотельные лазеры, но уже летом 1962 г. в нем организовали отдел полупроводниковых лазеров, еще не появившихся на свет. Дело решили дар предвидения и смелость директора М.Ф. Стельмаха, одного из выдающихся лазерщиков страны, и упрямая одержимость В.И. Швейкина. уже создавшего в воображении «свой» лазер (авт. свидетельство 714114 «Полупроводниковый лазер для инфракрасного излучения», заявл. 25.11.1961).

43 Назовем и ближайших сотрудников Алферова той поры: В.М. Андреев, Д.3. Гарбузов, В.И. Корольков, Е.Л. Портной, Д.Н. Третьяков.

44 Т.Г. Кмита, И.В. Рыжиков, В.И. Рыкалин, В.И. Павличенко. Полупроводниковый источник наносекундных световых импульсов, авт. свид. 161349 (заявл. 31.08.1962).

еще рефераты
Еще работы по истории техники