Реферат: Динамическое представление данных

Р Е Ф Е Р А Т на тему :

Динамическое представление сигналов


Выполнил: Зазимко С.А.

Принял: Котоусов А.С.


МОСКВА

Динамическое представление сигналов.

Многие задачи радиотехники требуют специфической формы представления сигналов. Для решения этих задач необходимо располагать не только мгновенным значением сигнала, но и знать как он ведет себя во времени, знать его поведение в “прошлом” и “будущем”.

ПРИНЦИП ДИНАМИЧЕСКОГО ПРЕДСТАВЛЕНИЯ.

Данный способ получения моделей сигналов заключается в следующем:

Реальный сигнал представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Теперь, если мы устремим к нулю длительность отдельных элементарных сигналов, то в пределе получим точное представление исходного сигнала. Такой способ описания сигналов называется динамическим представлением, подчеркивая тем самым развивающийся во времени характер процесса.

На практике широкое применение нашли два способа динамического представления.

Первый способ в качестве элементарных сигналов использует ступенчатые функции, которые возникают через равные промежутки времени D. Высота каждой ступеньки равна приращению сигнала на интервале времени D. В результате сигнал может быть представлен как на рисунке 1.

рис. 1

При втором способе элементарными сигналами служат прямоугольные импульсы. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее. В этом случае исходный сигнал имеет вид как на рисунке 2.


рис. 2


Теперь рассмотрим свойства элементарных сигналов. Для начала: используемого для динамического представления по первому способу.

ФУНКЦИЯ ВКЛЮЧЕНИЯ.

Допустим имеется сигнал, математическая модель которого выражается системой :


м0, t < -x,

u(t) =н0.5(t/x+1), -xЈt Јx, (1)

о1, t > x.


Такая функция описывает процесс перехода некоторого физического объекта из “нулевого” в “единичное” состояние.

Переход совершается по линейному закону за время 2x. Теперь если параметр x устремить к нулю, то в пределе переход из одного состояния в другое будет происходить мгновенно. Такая математическая модель предельного сигнала получила название функции включения или функции Хевисайда :

м 0,t < 0,

s(t) = н 0.5,t =0,(2)

о 1, t >0.


В общем случае функция включения может быть смещена относительно начала отсчета времени на величину t0. Запись смещенной функции такова :


м 0,t < t0,

s(t — t0) = н 0.5,t =t0,(3)

о 1, t >t0.


ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОГО СИГНАЛА ПОСРЕДСТВОМ ФУНКЦИЙ ВКЛЮЧЕНИЯ.

Рассмотрим некоторый сигнал S(t), причем для определенности скажем, что S(t)=0 при t<0. Пусть {D,2D,3D,...} — последовательность моментов времени и {S1,S2,S3,...} — отвечающая им последовательность значений сигнала. Если начальное значение сигнала есть S0=S(0), то текущее значение сигнала при любом t можно приближенно представить в виде суммы ступенчатых функций :

Ґ

s(t)»ss(t)+(s1-s)s(t-D)+...=ss(t)+е(sk-sk-1)s(t-kD).

k=1


Если теперь шаг D устремить к нулю. то дискретную переменную kD можно заменить непрерывной переменной t. При этом малые приращения значения сигнала превращаются в дифференциалы ds=(ds/dt)dt, и мы получаем формулу динамического представления произвольного сигнала посредством функций Хевисайда

Ґ

уds

S(t)=ss(t) + фs(t-t) dt(4)

хdt


Переходя ко второму способу динамического представления сигнала, когда элементами разложения служат короткие импульсы, следует ввести новое важное понятие — понятие дельта-функции.


ДЕЛЬТА — ФУНКЦИЯ .


Рассмотрим импульсный сигнал прямоугольной формы, заданный следующим образом :


1 йxxщ

u(t;x) = — кs(t + — ) — s(t — ---- ) ч (5)

xл2 2 ы



При любом выборе параметра x площадь этого импульса

равна единице :

Ґ

П = тudt = 1

— Ґ


Например, если u — напряжение, то П = 1 В*с.

Теперь устремим величину x к нулю. Импульс, сокращаясь по длительности, сохраняет свою площадь, поэтому его высота должна неограниченно возрастать. Предел последовательности таких функций при x ® 0 носит название дельта-функции, или функции Дирака1:


d(t) = lim u (t;x)

x®0

Дельта функция — интересный математический объект. Будучи равной нулю всюдю, кроме как в точке t = 0 2 дельта-функция тем не менее обладает единичным интегралом. А вот так выглядит символическое изображение дельта-функции :



ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА ПОСРЕДСТВОМ ДЕЛЬТА-ФУНКЦИЙ.


Теперь вернемся к задаче описания аналогового сигнала суммой примыкающих друг к другу прямоугольных импульсов (рис. 2). С помощью дельта-функции u (t) представимо в виде совокупности примыкающих импульсов. Если Sk — значение сигнала на k — ом отсчете, то элементарный импульс с номером k представляется как:


hk(t) = Sk [ s(t — tk) — s(t — tk — D) ] (6)

В соответствии с принципом динамического представления исходный сигнал S (t) должен рассматриваться как сумма таких элементарных слагаемых :

Ґ

S(t) = еh(t) (7)

k= — Ґk


В этой сумме отличным от нуля будет только один член, а именно тот, что удовлетворяет условию для t :


tk< t < tk+1


Теперь, если произвести подстановку формулы (6) в (7) предварительно разделив и умножив на величину шага D, то


Ґ1

S(t) = еSk — [ s(t — tk) — s(t — tk — D) ] D

k=- ҐD


Переходя к пределу при D®, необходимо суммирование заменить интегрированием по формальной переменной t, дифференциал которой dt, будет отвечать величине D.


Поскольку

1

lim [ s(t — tk) — s(t — tk — D) ] ---

D®0 D


получим искомую формулу динамического представления сигнала


Ґ

S (t) = тs (t) d(t — t) dt

Ґ


Итак, если непрерывную функцию умножить на дельта-функцию и произведение проинтегрировать по времени, то результат будет равен значению непрерывной функции в той точке, где сосредоточен d — импульс. Принято говорить, что в этом состоит фильтрующее свойство дельта-функции.1



Из определения дельта-функции следует (3). Следовательно, интеграл дельта-функции от — Ґ до t есть единичный скачок, и дельта-функцию можно рассматривать как производную единичного скачка :

d(t) = 1(t) ;

d(t-t0) = 1(t-t0) .


Обобщенные функции как математические модели сигналов.

В классической математике полагают, что функция S(t) должна принемать какие-то значения в каждой точке оси t. Однако рассмотренная функция d(t) не вписывается в эти рамки — ее значение при t = 0 не определено вообще, хотя эта функция и имеет единичный интеграл. Возникает необходимость расширить понятие функции как математической модели сигнала. Для этого в математике была введено принципиально новое понятие обобщенной функции.

В основе идеи обобщенной функции лежит простое интуитивное соображение. Когда мы держим в руках какой-нибудь предмет, то стараемся изучить его со всех сторон, как бы получить проекции этого предмета на всевозможные плоскости. Аналогом проекции исследуемой функции ¦(t) может служить, например, значение интеграла


Ґ

т¦(t) j(t)dt (8)

Ґ

при известной функции j(t) , которую называют пробной функцией.

Каждой функции j(t) отвечает, в свою очередь, некоторое конкретное числовое значение. Поэтому говорят, что формула (8) задает некоторый функционал на множестве пробных функций j(t). Непосредственно видно, что данный функционал линеен, то есть


(¦, aj1 + bj2) = ¦,j1) + b(¦,j2).


Если этот функционал к тому же еще и непрерывен, то говорят, что на множестве пробных функций j(t) задана обобщенная функция ¦(t) 1. Следует сказать, что данную функцию надо понимать формально-аксиоматически, а не как предел соответствующих интегральных сумм.

Обобщенные фнкции, даже не заданные явными выражениями, обладают многими свойствами классических функкций. Так, обобщенные функции можно дифференцировать.


И в заключение следует сказать, что в настоящее время теория обобщенных функций получила широкое развитие и многочисленные применения. На ее основе созданы математические методы изучения процессов, для которых средства классического анализа оказываются недостаточными.


Литература :


1. А. Л. Зиновьев, Л. И. Филипов ВВЕДЕНИЕ В

ТЕОРИЮ СИГНАЛОВ И ЦЕПЕЙ.


2. С. И. Баскаков РАДИОТЕХНИЧЕСКИЕ ЦЕПИ

И СИГНАЛЫ.


1 Также эту функцию называют единичной импульсной функцией,

2 Говорят, что дельта-функция сосредоточена в этой точке.

1 Отсюда вытекает структурная схема систем, осуществляющей измерение мгновенных значений аналогового сигнала S(t). Система состоит из двух звеньев: перемножителя и интегратора.


1 Обобщенные функции иногда называют также распределениями.



Р Е Ф Е Р А Т на тему :

Динамическое представление сигналов “


Слушателя 727 группы Зазимко С.А.
Динамическое представление сигналов.

Многие задачи радиотехники требуют специфической формы представления сигналов. Для решения этих задач необходимо располагать не только мгновенным значением сигнала, но и знать как он ведет себя во времени, знать его поведение в “прошлом” и “будущем”.

ПРИНЦИП ДИНАМИЧЕСКОГО ПРЕДСТАВЛЕНИЯ.

Данный способ получения моделей сигналов заключается в следующем. Реальный сигнал представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Теперь, если мы устремим к нулю длительность отдельных элементарных сигналов, то в пределе получим точное представление исходного сигнала. Такой способ описания сигналов называется динамическим представлением, подчеркивая тем самым развивающийся во времени характер процесса.

Широкое применение нашли два способа динамического представления.

Первый способ в качестве элементарных сигналов использует ступенчатые функции, которые возникают через равные промежутки времени D (рис. 1.1). Высота каждой ступеньки равна приращению сигнала на интервале времени D.

При втором способе элементарными сигналами служат прямоугольные импульсы. Эти импульсы непосредственно примыкают друг к другу и образуют последовательность, вписанную в кривую или описанную вокруг нее (рис. 1.2).


рис 1.1 рис 1.2


Рассмотрим свойства элементарного сигнала, используемого для динамического представления по первому способу.

ФУНКЦИЯ ВКЛЮЧЕНИЯ .

Допустим имеется сигнал, математическая модель которого выражается системой :

м0, t < -x,

u(t)=н0.5(t/x+1), -xЈt Јx, (1)

о1, t > x.


Такая функция описывает процесс перехода некоторого физического объекта из “нулевого” в “единичное” состояние. Переход совершается по линейному закону за время 2x. Если параметр x устремить к нулю, то в пределе переход из одного состояния в другое будет происходить мгновенно. Эта математическая модель предельного сигнала получила название функции включения или функции Хевисайда :


м 0,t < 0,

s(t) = н 0.5,t =0,(2)

о 1, t >0.


В общем случае функция включения может быть смещена относительно начала отсчета времени на величину t0. Запись смещенной функции такова :


м 0,t < t0,

s(t — t0) = н 0.5,t =t0,(3)

о 1, t >t0.


ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОГО СИГНАЛА ПОСРЕДСТВОМ ФУНКЦИЙ ВКЛЮЧЕНИЯ.

Рассмотрим некоторый сигнал S(t), причем для определенности скажем, что S(t)=0 при t<0. Пусть {D,2D,3D,...} — последовательность моментов времени и {S1,S2,S3,...} — отвечающая им последовательность значений сигнала. Если S0=S(0) — начальное значение, то текущее значение сигнала при любом t приближенно равно сумме ступенчатых функций :

Ґ

s(t)»ss(t)+(s1-s)s(t-D)+...=ss(t)+е(sk-sk-1)s(tkD).

k=1


Если теперь шаг D устремить к нулю. то дискретную переменную kD можно заменить непрерывной переменной t. При этом малые приращения значения сигнала превращаются в дифференциалы ds = (ds/dt) dt, и мы получаем формулу динамического представления произвольного сигнала посредством функций Хевисайда

Ґ

уds

S(t)=ss(t)+ фs(t-t) dt(4)

хdt


Переходя ко второму способу динамического представления сигнала, когда элементами разложения служат короткие импульсы, следует ввести новое важное понятие.

ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛА ПОСРЕДСТВОМ ДЕЛЬТА-ФУНКЦИЙ.

Рассмотрим импульсный сигнал прямоугольной формы, заданный следующим образом :


1 йxxщ

u(t;x) = — кs(t + — ) — s(t — ---- ) ч (5) xл2 2 ы



При любом выборе параметра x площадь этого импульса равна единице :

Ґ

П = тu dt = 1

— Ґ


Например, если u — напряжение, то П = 1 В*с.

Пусть теперь величина Е стремится к нулю. Импульс, сокращаясь по длительности, сохраняет свою площадь, поэтому его высота должна неограниченно возрастать. Предел последовательности таких функций при x ® 0 носит название дельта-функции, или функции Дирака :


d(t) = lim u (t;x)

x®0


Теперь вернемся к задаче описания аналогового сигнала суммой примыкающих друг к другу прямоугольных импульсов (рис. 2). Если Sk — значение сигнала на k — ом отсчете, то элементарный импульс с номером k представляется как:


hk(t) = Sk[ s(t — tk) — s(t — tkD) ] (6)

В соответствии с принципом динамического представления исходный сигнал S (t) должен рассматриваться как сумма таких элементарных слагаемых :

Ґ

S(t) = еh(t) (7)

k= — Ґk


В этой сумме отличным от нуля будет только один член, а именно тот, что удовлетворяет условию для t :


tk< t < t k+1


Теперь, если произвести подстановку формулы (6) в (7) предварительно разделив и умножив на величину шага D, то


Ґ1

S(t) = еSk — [ s(t — tk) — s(t — tkD) ] D

k=- ҐD


Переходя к пределу при D ® 0, необходимо суммирование заменить интегрированием по формальной переменной t, дифференциал которой dt, будет отвечать величине D. Поскольку


1

lim [ s(t — tk) — s(t — tkD) ] ---

D®0 D


получим искомую формулу динамического представления сигнала


Ґ

S(t) = тs (t) d(t — t) dt

Ґ


Итак, если непрерывную функцию умножить на дельта-функцию и произведение проинтегрировать по времени, то результат будет равен значению непрерывной функции в той точке, где сосредоточен d — импульс. Принято говорить, что в этом состоит фильтрующее свойство дельта-функции.1



Обобщенные функции как математические модели сигналов.

В классической математике полагают, что функция S(t) должна принемать какие-то значения в каждой точке оси t. Однако рассмотренная функция d(t) не вписывается в эти рамки — ее значение при t = 0 не определено вообще, хотя эта функция и имеет единичный интеграл. Возникает необходимость расширить понятие функции как математической модели сигнала. Для этого в математике была введено принципиально новое понятие обобщенной функции.

В основе идеи обобщенной функции лежит простое интуитивное соображение. Когда мы держим в руках какой-нибудь предмет, то стараемся изучить его со всех сторон, как бы получить проекции этого предмета на всевозможные плоскости. Аналогом проекции исследуемой функции ¦(t) может служить, например, значение интеграла


Ґ

т¦(t) j(t)dt (8)

Ґ

при известной функции j(t) , которую называют пробной функцией.

Каждой функции j(t) отвечает, в свою очередь, некоторое конкретное числовое значение. Поэтому говорят, что формула (8) задает некоторый функционал на множестве пробных функций j(t). Непосредственно видно, что данный функционал линеен, то есть


(¦, aj1 + bj2) = ¦,j1) + b(¦,j2).


Если этот функционал к тому же еще и непрерывен, то говорят, что на множестве пробных функций j(t) задана обобщенная функция ¦(t) 1. Следует сказать, что данную функцию надо понимать формально-аксиоматически, а не как предел соответствующих интегральных сумм.

Обобщенные фнкции, даже не заданные явными выражениями, обладают многими свойствами классических функкций. Так, обобщенные функции можно дифференцировать.


И в заключение следует сказать, что в настоящее время теория обобщенных функций получила широкое развитие и многочисленные применения. На ее основе созданы математические методы изучения процессов, для которых средства классического анализа оказываются недостаточными.


1 Отсюда вытекает структурная схема систем, осуществляющей измерение мгновенных значений аналогового сигнала S(t). Система состоит из двух звеньев: перемножителя и интегратора.


1 Обобщенные функции иногда называют также распределениями.


еще рефераты
Еще работы по информатике