Реферат: Азот и фосфор

--PAGE_BREAK--Кислородные соединения азота

 С кислородом азот образует ряд оксидов: N2О и NО — бесцветные газы, N2О3 голубое твердое вещество (ниже -100 град.С), NО2 — бурый газ, N2О4 — бесцветный газ, N2О5 — бесцветные кристаллы.

  Оксид N2О (закись азота, «веселящий газ», поскольку он обладает наркотическим действием) получают термическим разложением нитрата аммония или гидроксиламмония:

 [НN3ОН]NО2 = N2О + 2Н2О (внутримолекулярное конпропорционирование)

Оксид азота (+1) — эндотермическое соединение. Однако при комнатной химически температуре мало активен. При нагревании его реакционная способность сильно возрастает. Он окисляет водород, металлы, фосфор, серу, уголь, органические и другие вещества, например:

    Сu+ N2О = N2+ СuО

При нагревании N2О выше 700 град.С одновременно с реакцией разложения протекает его диспропорционирование:

    2N2О = 2N2+ О2;    2N2О = 2NО + N2

С водой оксид азота (+1) не взаимодействует, хотя известна кислота Н2N2О2,

в которой азот тоже имеет степень окисления +1. Эта кислота называется азотноватистой, и ей приписывается структура с двумя равноценными атомами азота:

   

Свободную азотноватистую кислоту можно получить следующим образом:

  NН2ОН + НNО2 = Н2N2О2 + Н2О

Она хорошо растворяется в воде, но кислота слабая. Азотноватистая кислота весьма неустойчива, при незначительном нагревании взрывается:

 Н2N2О2 = N2О + Н2О

   Соли Н2N2О2 — гипонитриты и гидрогипонитриты — в воде сильно подвержены гидролизу. Большинство гипонитритов мало растворимо в воде, намного лучше растворяются гидрогипонитриты.

   Четные степени окисления для азота сравнительно мало характерны. К числу таких соединений относится оксид азота (+2). Молекула NО содержит нечетное число электронов и, по существу, представляет собой обладающий малой активностью радикал. В молекуле одна ковалентная по донорно-акцепторному механизму и две П-связи. Несмотря на эндотермичность и положительную величину энергии Гиббса образования NО из простых веществ, оксид азота (+2) не распадается на элементы. Дело в том, что, согласно ММО, порядок связи в NО довольно высок и равен 2,5. Молекула NО прочнее молекулы О2, так как у первой на разрыхляющей МО П2р*всего один электрон, а у второй — два электрона.

   В лаборатории оксид азота (+2) чаще всего получают действием разбавленной кислоты на медные стружки:

      3Сu+ 8НNО3 = 3Сu(NО3)2 + 2NО + 4Н2О

На воздухе оксид азота (+2) мгновенно окисляется:

      2NО + О2 = 2NО2

Окисляется NО и галогенами, образуя нитрозилгалогениды:

      2NО + Г2 = 2NОГ

При взаимодействии с восстановителями NО восстанавливается до N2О, N2, NН2ОН, NН3 в зависимости от восстановительной способности партнера и условий провидения процессов

  Водный раствор оксида азота (+2) нейтрален. Никаких соединений с водой он не образует, хотя известны соли (гипонитраты) не выделенной в свободном состоянии азотноватой кислоты Н2N2О3, в которой азот также имеет степень окисления +2.

  Оксид азота N2О3  существует в твердом состоянии (ниже -100 град.С). В жидком и парообразном состояниях оксид азота (+3) в значительной степени диссоциирован за счет диспропорционирования:

     N2О3  NО + NО2

 Получают N2О3 охлаждением эквимолярных количеств NО и NО2. А равномерный ток смеси нужного состава получается при взаимодействии 50%-ной НNО3  с оксидом мышьяка (+3):

    2НNО3 + Аs2О3 = 2НАsО3 + NО + NО2

 Оксиду азота (+3) отвечает известная лишь в растворе неустойчивая азотистая кислота НNО2. Получить ее можно растворением в воде равных объемов NО и NО2 в воде:

   NО + NО2  + Н2О = 2НNО2

При хранении и нагревании НNО2 диспропорционирует:

   3НNО2 = НNО3 + 2NО + Н2О

Наиболее характерные для нее окислительные свойства:

   НNО2 + 2НI= I2 + 2NО + 2Н2О

Однако сильные окислители переводят азотистую кислоту в азотную:

   5НNО2 + 2КмnО4 + 3Н2SО4 = К2SО4 + 2МnSО4+ 5НNО3 + 3Н2О

 Оксид азота (+4) получают растворением меди в концентрированной азотной кислоте:  Сu+ 4НNО3  = Сu(NО3)2 + 2NО2 + 2Н2О

Он является хорошим окислителем, в нем горят фосфор, сера, уголь и некоторые органические вещества. Выше 150 град.С диоксид азота начинается разлагаться:

    2NО2 = 2NО + О2

Поскольку молекула диоксида азота с неспаренным электроном по существу представляет собой радикал, она легко димеризуется:

    2NО2     N2О4

Димер бесцветен и диамагнитен в отличие от окрашенного в красно-бурый цвет и парамагнитен.

 Диоксид азота при взаимодействии с водой диспропорционирует:

    2NО2 + Н2О = НNО2 + НNО3

При растворении NО2 в горячей воде получается азотная кислота, ибо первоначально образующаяся азотиста кислота диспропорционирует с выделением оксида азота (+2) и образованием азотной кислоты.

   Оксид азота (+5) имеет молекулярную структуру только в газовой фазе. В твердом состоянии N2О5 имеет структуру, образованную ионами NО2+ и NО3-. N2О5   — легко возгоняющиеся кристаллы, причем испаряются молекулы. Таким образом, при возгонке оксида азота (+5) ионыNО2+ и NО3- объединяются в молекулы N2О5. Получают оксид азот (+5) дегидратацией азотной кислоты с помощью Р2О5 или окислением NО2 озоном:

   2НNО3 + Р2О5  = 2НРО3  + N2О5;  6NО2 + О3 = 3N2О5

Оксид азота (+5) является энергичным окислителем, многие реакции с его участием протекают весьма бурно. При растворение в воде дает азотную кислоту: 

   N2О5 + Н2О = 2НNО3     

Азотная кислота — одна из сильных кислот. Молекула НNО3 и нитрат-ион имеют строение, представленное схемами
Безводная азотная кислота представляет собой бесцветную летучую жидкость. При хранении (особенно на свету) и при нагревании частично разлагается:

    4НNО3 = 4NО2 + 2Н2О + О2

Так называемая «дымящая» азотная кислота (красного цвета) представляет собой раствор выделяющегося диоксида азота в концентрированной НNО3.

   В лаборатории НNО3 получают нагреванием нитрата натрия с серной кислотой:

      NaNО3  + Н2SО4 = НNО3 + NaНSО4

В промышленности азотную кислоту получают из аммиака. Сначала аммиак каталитически окисляют до оксида азота (+2), который далее окисляется до   

NО2. Затем оксид азота (+4) растворяют в горячей воде и получают  азотную кислоту.

   Азотная кислота является сильным окислителем и окисляет почти все металлы и неметаллы. Последние, как правило, переводятся ею в производные высшей степени окисления, например:

    S + 6НNО3  = Н2SО4+ 6NО2 + 2Н2О

Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например, железо, алюминий, хром) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления НNО3 протекает в нескольких параллельных направлениях, и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры.

   Более сильным окислителем является смесь концентрированных азотной и соляной кислот — «царская водка». Она растворяет даже золото и платину, которые не растворяются в азотной, а тем более в соляной кислоте. Ее окислительная активность обусловлена снижением редокс — потенциала растворяющихся металлов, т. е. усилением их восстановительных свойств за счет образования прочных хлоридных комплексов:

   Аu+ НNО3  + 4НСl = Н[АuСl4] + NО + 2Н2О

  Соли азотной кислоты — нитраты — известны почти для всех металлов. Большинство из них бесцветны и хорошо растворяются в воде. В кислых водных растворах нитраты являются более слабыми окислителями, чем азотная кислота, а в нейтральной среде вообще не обладают окислительными свойствами. Сильными окислителями они являются в расплавах, когда происходит разложение с выделением кислорода. Оксид азота (+5) при взаимодействии со 100%-ным пероксидом водорода образует пероксоазотную (надазотную) кислоту:

   N2О5 + 2Н2О2 = 2НNО4 + Н2О

Пероксоазотная кислота нестойка, легко взрывается, водой полностью гидролизуется:

                         О

    Н-О-О-N           + Н2О = Н2О2 + НNО3

                         О
      Соединения с неметаллами

 Известны все галогениды азота NГ3. Трифторид NF3получают взаимодействием фтора с аммиаком:

   3F2 + 4NН3 = 3NН4F + NF3

Трифторид азота — бесцветный токсичный газ, молекулы которого обладают пирамидальным строением. У основания пирамиды дислоцированы атомы фтора, а вершина занята атомом азота с неподеленной электронной парой. К различным химическим реагентам и к нагреванию NF3весьма устойчив.

   Остальные тригалогениды азота эндотермичны, а потому неустойчивы и реакционноспособны. NCl3 образуется при пропускании газообразного хлора в крепкий раствор хлорида аммония:

   3Cl2+NН4Сl= 4НСl + NCl3  

Трихлорид азота представляет собой легколетучую (tкип = 71 град.С) жидкость с резким запахом. Небольшой нагрев или удар сопровождается взрывом с выделением большого количества теплоты. При этом NCl3распадается на элементы. Тригалогениды NBr3 и NI3 еще менее стабильны.

  Производные азота с халькогенами очень неустойчивы вследствие их сильной эндотермичности. Все они плохо изучены, при нагреве и ударе взрываются.
      Соединения с металлами

 Солеобразные нитриды получают прямым синтезом из металлов и азота. Водой и разбавленными кислотами солеобразные нитриды разлагаются:

   Мg3N2 + 6N2 = 3Мg(ОН)2 + 2NH3

   Са3N2 + 8НСl= 3СаСl2+ 2NH4Сl

Обе реакции доказывают основную природу нитридов активных металлов.

  Металлоподобные нитриды получают нагреванием металлов в атмосфере азота или аммиака. В качестве исходных веществ могут применяться оксиды, галогениды и гидриды переходных металлов:

   2Та + N2 = 2ТаN;  Мn2О3+ 2NH3 = 2МnN + 3Н2О

   СrCl3+ NH3 = СrN + 3НСl;  2ТiН2 + 2NH3 = 2ТiN +5Н2

 

      

      Применение азота и  азотсодержащих соединений

 Область применения азота очень велика — производство удобрений, взрывчатых веществ, нашатырного спирта, который используют  в медицине. Азотсодержащие удобрения являются самыми ценными. К таким удобрениям относится  аммиачная селитра, мочевина, аммиак, натриевая селитра. Азот является неотъемлемой часть белковых молекул, поэтому он и необходим растениям для нормального роста и развития. Такое важное соединение азота с водородом, как аммиак, используют в холодильных установках, аммиак, циркулируя по замкнутой системе труб,  при своем испарение отнимает большое количество теплоты. Калийная селитра идет на производство дымного пороха, а порох используют в охотничьих ружьях, для разведки рудных ископаемых, залегающих под землей. Без дымный порох получают из пироксилина — сложного эфира целлюлозы и азотной кислоты. Органические взрывчатые вещества на основе азота используют для прокладки тоннелей в горах (тротил, нитроглицерин).  
     
         Фосфор

      История открытия фосфора

   Фосфор был открыт в 1669 г. алхимиком Брандтом, когда он в поисках «философского камня» сильно нагревал сухой остаток мочи с углем без доступа воздуха. Выделенное вещество светилось на воздухе и затем загоралось. За это свойство Брандт дал ему название «фосфор», т.е. носящий свет («светоносец»).

   После открытия еще сто лет фосфор был редким и дорогим веществом,    т.к. содержание в моче его ничтожно мало, а добывание сложно. И лишь после 1771 г., когда шведский химик Шееле разработал способ получение фосфора из костей, стало возможным получение его  в значительных количествах. 

 

     Особенности фосфора

   Второй типический элемент типический элемент в пятой группе является неметаллом. Наивысшая степень окисления, которую может проявлять фосфор, равна +5. Соединения, содержащие фосфор в степени окисления меньшей, чем +5 проявляют себя как восстановители. В то же время соединения фосфора +5 в растворах окислителями не являются. Кислородные соединения фосфора более устойчивы, чем таковые азота. Водородные же соединения менее стабильны.
    Природные соединения и получение фосфора

   По распространенности в земной коре фосфор опережает азот, серу и хлор. В отличие от азота фосфор встречается в природе только в виде соединений. Наиболее важные минералы фосфора — апатит Са5Х(РО4)3 (Х — фтор, реже хлор и гидрооксильная группа) и фосфорит основой которого является Са3(РО4)2. Кроме того, фосфор входит в состав некоторых белковых веществ и содержится в растениях и организмах животных и человека.

   Из природного фосфорсодержащего сырья свободный фосфор получают высокотемпературным восстановлением (1500 град.С) коксом в присутствии песка. Последний связывает оксид кальция в шлак — силикат кальция. В случае восстановления фосфорита суммарная реакция может быть представлена уравнением:

       Са3(РО4)2 + 5С + 3SiО2 = СаSiО3 + 5СО + Р2

Образующийся угарный газ и парообразный фосфор поступают в холодильник с водой, где происходит конденсация с образованием твердого белого фосфора.
         продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по химии