Реферат: Пластмассы их составные части, классификация,достоинства и недостатки

Санкт-Петербургский Государственный Университет

Сервиса и Экономики

Контрольная работа

«Пластмассы, их составные части, классификация,

достоинства и недостатки»

Работу выполнил

Студент 3-го курса

Группы 2307 п

Дюбескин В. А.

Санкт-Петербург

2009

Содержание:

Пластические массы

Термапластичные пластмассы

Не полярные термопластичные пластмассы

Полипропилен

Полиэтилентерефталат

Список используемой литературы

Пластические массы

Среди основных используемых промышленностью полимерных материалов (пластмасс, волокон, синтетических, каучуков и лакокрасочных покрытий) пластические массы занимают первое место.

Предполагают, что в ближайшее время объем производства пластмасс сравняется, с производством стали. Это объясняется тем, что производство пластмасс базируется на полимерах, получаемых из дешевых и массовых источников сырья, таких как нефть, природный газ, уголь. Высокопроизводительные методы изготовления деталей из пластмасс делают их экономически выгодными. Имеется широкая возможность изменения свойства пластмасс путем использования различных наполнителей. Так, газонаполненные пластики обладают хорошими звукоизолирующими свойствами, сочетают хорошую теплопроводность с очень малой плотностью.

Различные термопластики, углетекстолиты и другие пластмассы сочетают малую плотность с высокой прочностью, достигающей иногда прочности стали.

Термопластичные пластмассы.

В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда состав полимеров вводят пластификаторы. Термопласты имеют ограниченную рабочую температуру, 60-70 градусов начинается резкое снижение физико-механических свойств. Более теплостойкие структуры могут работать до 150-250 градусов, а термостойкие с жесткими цепями и циклические структуры устойчивы до400-600 градусов.

При длительном статическом нагружении появляется вынужденно-эластическая деформация и прочность понижается. С увеличением прочности деформирование не успевает развиваться высоко эластическая деформация и появляется жесткая, иногда даже хрупкое разрушение. Более прочными и жесткими являются кристаллические полимеры. Предел прочности термопластов составляет 10-100 МПа. Они хорошо сопротивляются усталости, их долговечность выше, чем у металла. Предел выносливости составляет 0,2-0,3 предела прочности. Предел выносливости с выше 20Гц происходит разогрев материала и уменьшение прочности.

Термопласты делят на не полярные и полярные.

Не полярные термопластичные пластмассы.

Полиэтилен (-СН2-СН2-) n - продукт полимеризации бесцветного газа этилена, относящимся к кристаллизующимся полимерам. По плотности полиэтилен подразделяют на полиэтилен низкой плотности, получаемый в процессе полимеризации при высоком давлении, содержащии55-65% кристаллической фазы, и полиэтилен высокой плотности, получаемый при низком давлении (ПЭНД), имеющий кристалличность до74 до95%.

Чем выше плотность и кристалличность полиэтилена, тем выше прочность и теплостойкость материала. Длительно полиэтилен можно применять при температуре до 60-100. Морозостойкость достигает -70 градусов и ниже. Полиэтилен химически стоек и при нормальной температуре не растворим не в одном из известных растворителей.

Не достатком полиэтилена являются его подверженность старению. Для защиты от старения полиэтилен вводят стабилизаторы и ингибиторы (2-3% сажи замедляют процессы старения в 30 раз).

Под действием ионизирующего излучения полиэтилен твердеет: приобретает большую прочность и теплостойкость.

Полиэтилен является экологически безвредным, поэтому его применяют в медицине, жилищном строительстве, в продовольственном машиностроении и для производства товаров народного потребления.

Полипропилен (-СН2-СНСН3-) n является производной этилена.

Применяя, метало органические катализаторы, получают полипропилен, содержащий значительное количество стереорегулярной структуры. Это жесткий не тактичный материал с высокими физико-механическими свойствами. По сравнению с полиэтиленом этот пластик более теплостоек: сохраняет форму до температуры 150 градусов. Полипропиленовые пленки прочны и более газа не проницаемы чем полиэтиленовые, а волокна эластины, прочны и химически стойки. Не стабилизированный полипропилен подвержен быстрому старению. Недостатком полипропилена является его не высокая морозостойкость (от-10 до — 20градусов). Полипропилен применяют для изготовления труб, конструкционных деталей автомобиля, холодильников, корпусов насосов различных емкостей. Пленки используют в тех же целях, что и полиэтиленовые.

Полиэтилентерефталат — сложный полиэфир, в СССР выпускался под названием лавсан, за рубежом — майлар, терилен. Полиэтилентерефталат является кристаллическим полимером: при быстром охлаждении расплава можно получать аморфный полимер, который при нагреве с выше 80 градусов начинает кристаллизоваться. Присутствие кислорода в основной цепи сообщает хорошую момзостойкость-70 градусов. Бензельное кольцо повышает теплостойкость (температура плавления 255-257 градусов). Полиэтилентерефталатявляется диэлектриком и обладает сравнительно высокой химической стойкостью, устойчив в условиях тропического климата. Из полиэтилентерефталата изготовляют волокна пленки кронштейны и другое.

Список используемой литературы:

1. Материаловедение, Москва, 1989г, «Металлургия», О.В. Травин, Н.Т. Травина

2. Материаловедение, Москва, 1990г, «Машиностроение», Ю.М. Лахтин, В.П.Леонтьева

3. Материаловедение, Москва, 1989г, «Металлургия», Ю.А. Геллер, А.Г. Рахштадт

еще рефераты
Еще работы по физике