Реферат: Виды повреждений кабельных линий, краткая характеристика методов их обнаружения

--PAGE_BREAK--

2.1.3
Коэффициент укорочения электромагнитных волн


Зондирующие импульсы распространяются в кабельных линиях по определенным волновым каналам, определяемым режимом включения «жила – жила», «жила – оболочка» и другие варианты.

Импульсный сигнал распространяется в линии с определенной скоростью, которая зависит от типа диэлектрика и определяется выражением:
<img width=«85» height=«39» src=«ref-1_1895473510-1090.coolpic» v:shapes="_x0000_i1041"> (2.8)
где с – скорость света,

γ – коэффициент укорочения электромагнитной волны в линии,

ε – диэлектрическая проницаемость материала изоляции кабеля.
Коэффициент укорочения показывает во сколько раз скорость распространения импульса в линии меньше скорости распространения в воздухе.

В любом рефлектометре перед измерением расстояния нужно установить коэффициент укорочения. Точность измерения расстояния до места повреждения зависит от правильной установки коэффициента укорочения.

Величина γ является справочной только для радиочастотных кабелей, для других типов кабелей не нормируется. Коэффициент укорочения можно определить импульсным рефлектометром по кабелю известной длины.

Для многожильных и многопарных кабелей коэффициент укорочения, волновое сопротивление и затухание различны для каждого варианта включения, поэтому рекомендуются включения рефлектометра независимо от типа повреждения по схеме «жила – жила». При повреждении одной из жил можно использовать схему включения «поврежденная жила – неповрежденная жила».

Включение рефлектометра по схеме «жила – оболочка» позволяет выявить поврежденную жилу методом сравнения.
2.1.4
Помехи импульсной рефлектометрии и борьба с ними


По соотношению величин отражения от повреждения и напряжения помех все отражения можно разделить на простые и сложные.

Простое повреждение – это такое повреждение кабельной линии, при котором амплитуда отражения от места повреждения больше амплитуды помех.

Сложное повреждение – это такое повреждение, для которого амплитуда отражения от места повреждения меньше или равна амплитуде помех.

По источникам возникновения помехи бывают асинхронные (аддитивные) и синхронные.

Асинхронные помехи не связаны с зондирующим сигналом и неоднородностями кабельной линии и вызваны наводками от соседних кабельных линий, от оборудования, транспорта и различной аппаратуры.
<img width=«170» height=«80» src=«ref-1_1895474600-4116.coolpic» v:shapes="_x0000_i1042">

Рис 2.13 Пример рефлектограммы кабельной линии с асинхронными помехами
На рефлектограмме асинхронные помехи полностью закрывают отражение от повреждения. Это отражение невозможно рассмотреть на фоне помех.

Эффективными методами отстройки от асинхронных помех являются аналоговая фильтрация и цифровое накопление сигнала.

Аналоговая фильтрация применялась в основном в аналоговых рефлектометрах, таких как Р5–10 и Р5–13.

Сущность цифрового накопления заключается в том, что одну и туже рефлектограмму считывают несколько раз и вычисляют среднее значение. В связи с тем, что асинхронные помехи носят случайный характер, после цифрового накопления их уровень значительно снижается.
<img width=«190» height=«83» src=«ref-1_1895478716-3126.coolpic» v:shapes="_x0000_i1043">

Рис 2.14 Пример предыдущей рефлектограммы линии, «очищенной» в результате цифрового накопления рефлектометром
В этой рефлектограмме можно легко выделить сигнал, отраженный от места утечки.

Синхронные помехи связаны с зондирующим сигналом и являются отражениями зондирующего сигнала от неоднородностей волнового сопротивления линии (отражения от кабельных муфт, ответвлений, кабельных вставок, неоднородностей кабельных линий технологического характера и др.).

Основная масса кабельных линий (кроме кабелей связи) не предназначены для передачи коротких импульсных сигналов, используемых при методе импульсной рефлектометрии. Поэтому этим кабельным линиям присуще большое количество синхронных помех.




<img width=«232» height=«127» src=«ref-1_1895481842-7185.coolpic» v:shapes="_x0000_i1044">

Рис 2.15 Пример рефлектограммы кабельной линии с синхронными помехами
Синхронные помехи можно существенно уменьшить посредством сравнения или дифференциального анализа.

При сравнении накладывают рефлектограммы двух линий (неповрежденной и поврежденной), проложенных по одной трассе.
<img width=«247» height=«134» src=«ref-1_1895489027-1880.coolpic» v:shapes="_x0000_i1045">

Рис 2.16 При сравнении накладывают рефлектограммы двух линий
Наложение двух рефлектограмм позволяет быстро обнаружить начальную точку их различия, по которой и определяют расстояние L до повреждения.

При дифференциальном анализе рефлектограммы поврежденной и неповрежденной линий вычитают, как показано на рисунке ниже.




<img width=«247» height=«223» src=«ref-1_1895490907-2425.coolpic» v:shapes="_x0000_i1046">

Рис 2.17 При дифференциальном анализе рефлектограммы поврежденной и неповрежденной линий
Из рисунка видно, что при вычитании все синхронные помехи компенсируются. По разностной рефлектограмме легко обнаружить отражение от места повреждения и определить расстояние L до него.

Наилучшие результатов от сравнения и вычитания удается получить при использовании в качестве исправной линии жилы или кабельной пары того же кабеля.

При измерении кабельной линии методом импульсной рефлектометрии асинхронные и синхронные помехи присутствуют на рефлектограмме одновременно.

Асинхронные помехи (кроме помех импульсного характера), как правило, имеют одинаковые величины, независимо от того, с какого конца кабельной линии ведется измерение рефлектометром.

Синхронные помехи при измерении с разных концов кабеля имеют различную величину, в зависимости от многих факторов: длины кабельной линии, затухания импульсных сигналов, удаленности места повреждения и мест неоднородностей волнового сопротивления кабельной линии, точности согласования выходного сопротивления импульсного рефлектометра с волновым сопротивлением линии и других факторов. Поэтому отраженный сигнал от одной и той же неоднородности может иметь различные величины при измерении с разных концов линии.

Если хотя бы предположительно известно, к какому концу кабельной линии ближе может быть расположено место повреждения, то для измерений нужно выбирать именно этот конец кабельной линии. В других случаях желательно проводить измерения последовательно с двух концов кабельной линии.

Следует учитывать, что даже такие повреждения как «короткое замыкание» и «обрыв», дающие максимальные отражения зондирующего сигнала, не всегда можно легко обнаружить на фоне помех. Например при большом затухании и больших неоднородностях волнового сопротивления линии амплитуда отражения от удаленного повреждений типа «короткое замыкание» или «обрыв» зачастую бывает меньше, чем отражения от близко расположенных неоднородностей волнового сопротивления. Поэтому такие повреждения являются сложным для обнаружения.
<img width=«247» height=«134» src=«ref-1_1895493332-1559.coolpic» v:shapes="_x0000_i1047">

Рис 2.18 Рефлектограмма кабельной линии со сложным повреждением
Как правило, сложные повреждения встречаются значительно чаще чем простые.

На практике метод импульсной рефлектометрии позволяет эффективно определить обрыв, короткое замыкание, низкоомное соединения жил или оболочки при сопротивлении утечки до 10 кОм, муфты, ответвления и т.д. При малых синхронных помехах возможно обнаружение повреждений и при более высоких значениях сопротивлений утечки.




2.1.5Выводы по методу

Метод импульсной рефлектометрии удобен для практического использования, так как для измерения импульсным рефлектометром достаточно доступа к линии с одного конца.

Импульсные рефлектометры позволяют определить расстояние до места повреждения линии при любом характере повреждения (обрыв, короткое замыкание, утечка, продольное сопротивление и т.д.).

Результаты, достигаемые при измерениях импульсным рефлектометром, зависят от его возможностей по отстройке от помех.

Метод импульсной рефлектометрии позволяет достигнуть более высокой точности измерений расстояния до места повреждения по сравнению с другими методами (например, по сравнению с мостовым): 1% – для аналоговых импульсных рефлекторов и 0,2% – для цифровых.
2.2 Метод кратковременной дуги (импульсно-дуговой метод)
Метод кратковременной дуги может быть использован для определения расстояния до места сложного (высокоомного) или неустойчивого повреждения. Сущность метода кратковременной дуги заключается в одновременном воздействии на кабельную линию высоковольтным импульсом и выполнении измерений методом импульсной рефлектометрии.
<img width=«322» height=«172» src=«ref-1_1895494891-8949.coolpic» v:shapes="_x0000_i1048">

Рис 2.19 Структурная схема подключения к кабельной линии устройств


Высоковольтный импульсный генератор, представляющий собой источник высокого напряжения, у которого на выходе включен высоковольтный конденсатор и специальный разрядник, подключается к кабельной линии через устройство поддержания дуги (его основной компонент – индуктивность).

При подаче импульса от источника высокого напряжения в месте высокоомного дефекта возникает пробой, через устройство поддержания дуги начинает протекать ток и пробой «затягивается» – образуется дуговой разряд. За счет индуктивности, имеющейся в устройстве поддержания дуги, ток дуги поддерживается в течении определенного времени (менее секунды). Электрическое сопротивление дуги близко к нулю, что эквивалентно короткому замыканию.

Импульсный рефлектометр подключается через специальное присоединительное устройство (фильтр). Зондирующие импульсы от рефлектометра через присоединительное устройство поступают в кабельную линию, а отраженные импульсы – возвращаются в рефлектометр.

Последовательность проведения измерений при методе кратковременной дуги следующая.

Через присоединительное устройство считывают рефлектограмму кабельной линии и сохраняют ее в памяти импульсного рефлектометра. Так как импульсы с генератора высоковольтных импульсов отсутствуют или имеют недостаточную для пробоя установленную амплитуду, то пробой и дуга в месте сложного или неустойчивого повреждения отсутствуют. На рефлектограмме отраженный сигнал от высокоомного повреждения практически неразличим на фоне помех. Наблюдаются отражения от неоднородностей линии (муфт, кабельных вставок и т.д.) и от разомкнутого конца кабельной линии.

Затем выходное напряжение высоковольтного источника в генераторе высоковольтных импульсы постепенно увеличивают до тех пор, пока в кабельной линии не появятся пробои. В такт с высоковольтными импульсами в месте дефекта будет зажигаться кратковременная электрическая дуга. Период повторения кратковременной дуги нестабильный. Зондирующие импульсы подаются в кабельную линию с частотой, которая во много раз больше частоты зажигания дуги. При совпадении зондирующего импульса с моментом зажигания дуги, он отражается от дуги как от короткого замыкания, и возвращаются к началу кабеля, где записывается в память рефлектометра.
<img width=«246» height=«99» src=«ref-1_1895503840-4373.coolpic» v:shapes="_x0000_i1049">

Рис. 2.20 Совпадение импульса горения дуги и зондирующего импульса
Для более надежного определения места повреждения необходимо добиться неоднократного совпадения зондирующего импульса с моментом зажигания дуги. Импульс, отраженный от дуги, отчетливо виден на рефлектограмме. Дальше дуги импульс не проходит, поэтому на рефлектограмме не видно конца линии.

Далее на экране рефлектометра накладывают друг на друга две записанные в рефлектограммы: рефлектограмму до возникновения дуги и рефлектограмму после возникновения дуги. Это позволяет отчетливо наблюдать место начала расхождения рефлектограмм, которое и соответствует месту сложного или неустойчивого повреждения.
<img width=«294» height=«90» src=«ref-1_1895508213-6447.coolpic» v:shapes="_x0000_i1050">

Рис 2.21 Наложение рефлектограмм при методе кратковременной


Таким образом, при методе кратковременной дуги высокоомное повреждение кратковременно переводится в низкоомное.

Достоинства метода кратковременной дуги:

1. Высокая точность измерений. (Точность измерения такая же как у метода импульсной рефлектометрии. Есть возможность воспользоваться растяжкой рефлектограммы выбранного участка линии).

2. Простота представления результатов измерения. (По рефлектограмме кабельной линии до возникновения кратковременной дуги легко определить длину всей кабельной линии и ее неоднородности. На рефлектограмме в момент кратковременной дуги легко присутствует отражение от места повреждения, как отражение короткого замыкания при методе импульсной рефлектометрии. Для устранения влияния неоднородностей достаточно воспользоваться сравнением двух рефлектограмм.).

3. В месте повреждения выделяется небольшое, по сравнению с прожигом, количество энергии, поэтому вредное влияние на кабель минимальное. Нет вредного воздействия и на соседние кабели.

4. Возможность реализовать этот метод на различных типах КЛ.
2.3 Волновой метод (метод колебательного разряда)
Возникновение пробоя в месте повреждения вызывает появление в кабельной линии волновых процессов.

Существует 2 варианта осуществления волнового метода для определения расстояния до места повреждения: метод бегущей волны напряжения и метод импульсного тока.
2.3.1
Метод бегущей волны напряжения


При методе бегущей волны напряжения в кабельную линию от источника высокого испытательного напряжения через сопротивление, величина которого значительно больше волнового сопротивления линии, подают напряжение, которое медленно повышают.
<img width=«300» height=«146» src=«ref-1_1895514660-10149.coolpic» v:shapes="_x0000_i1051">

Рис 2.22 Структурная схема реализации волнового метода бегущей волны напряжения
Под влиянием отрицательного испытательного напряжения в момент времени to на расстоянии L происходит пробой (короткое замыкание) и разряд. В месте повреждения формируются электромагнитные волне положительной полярности, так как испытательное напряжение имело отрицательную полярность, а коэффициент отражения в месте пробоя (короткого замыкания) также отрицателен К= -1.
<img width=«414» height=«214» src=«ref-1_1895524809-19874.coolpic» v:shapes="_x0000_i1052">

Рис 2.23 Волновой процесс при методе бегущей волны напряжения
Одна из волн распространяется от места пробоя к началу кабеля, а другая – к концу кабеля. Достигнув начала кабеля, первая волна отражается от большого сопротивления источника и, не изменяя полярности, распространяется к месту повреждения. В месте повреждения вновь возникает пробой и отражение с обратным знаком, и так далее. Затухая, волновой процесс продолжается до тех пор, пока энергии волны достаточно для пробоя в месте повреждения.
2.3.1
Волновой метод импульсного тока (бегущей волны тока)


Метод импульсного тока используют в том случае, если высокоомные повреждения (снижение сопротивления изоляции или высокоомное замыкание жилы на землю, или малое расстояние между проводниками в муфтах) не удается преобразовать с помощью прожига в низкоомное повреждение. Причиной тому могут быть просачивание в кабель воды или заплывающие повреждения.

В отличие от метода бегущей волны напряжения выходное сопротивление высоковольтного импульсного генератора должно быть значительно меньше волнового сопротивления кабельной линии и коэффициент отражения напряжения от начала линии и места повреждения в момент пробоя равен Кu = -1, а коэффициент отражения тока К i= 1.
<img width=«252» height=«146» src=«ref-1_1895544683-9323.coolpic» v:shapes="_x0000_i1053">

Рис 2.24 Структурная схема реализации волнового метода бегущей волны тока
Высоковольтный импульсный генератор представляет собой источник высокого напряжения, у которого на выходе включен высоковольтный конденсатор и специальный разрядник, с которого высоковольтные импульсы поступают в кабель.


<img width=«300» height=«276» src=«ref-1_1895554006-13105.coolpic» v:shapes="_x0000_i1054">

Рис 2.24 Волновой процесс при методе бегущей волны тока
Ударная волна посылается в поврежденный кабель в момент t0 и в момент t1 достигает места повреждения. Под воздействием ударной волны происходит пробой поврежденного участка кабельной линии в момент t1з, вызывающий отражение. Этот отраженный сигнал возвращается к началу кабеля в момент t2 и отражается от начала кабеля (входное сопротивление генератора импульсов эквивалентно короткому замыканию) в сторону повреждения и в момент t4 снова достигает начала кабеля и т.д.

Состояние пробоя (длительность электрической дуги) сохраняется до тех пор, пока достаточно энергии для горения дуги. Для того чтобы вызвать пробой в месте повреждения, необходимо в течение определенного времени (t1з – t1) воздействовать на поврежденный участок (время ионизации). Это время зависит от амплитуды высоковольтного импульса и переходного сопротивления в месте повреждения. Чтобы исключить влияние задержки ионизации на результат измерения расстояния до места повреждения, замеряют время между первой и второй отраженными волнами t2 и t4: Tl = t4 – t2.

Связь измерителя волновых процессов с кабельной линией производится с помощью специального присоединительного устройства по току (импульсного токопреобразователя). Импульсный токопреобразователь дифференцирует импульсный ток на входе линии и преобразует его в однополярные импульсы, поступающие на вход измерителя волновых процессов.

При волновом методе измерений выходное сопротивление высоковольтного источника не равно волновому сопротивлению линии, поэтому кроме отраженных волн от участка повреждения появляются отраженные от неоднородностей кабеля (муфт, ответвлений) и переотраженные от начала кабеля импульсные сигналы – синхронные помехи, значительно затрудняющие оценку импульсной характеристики кабеля.

При волновом методе расстояние до места повреждения определяется по временной задержке между приходом к началу кабеля импульсов напряжения или импульсов тока, отраженных от места повреждения. Импульсы напряжения по длительности занимают половину расстояния до места повреждения, а ударные импульсы тока также имеют достаточно большие длительности. Это приводит к следующим недостаткам по сравнению с методом импульсной рефлектометрии:

1. Сложность анализа полученных импульсных характеристик при измерениях волновым методом. (Вид этих характеристик зависит не только от характера повреждения и длины линии, но и от величины поданных импульсов, наличия или отсутствия пробоя в месте повреждения и т.д.)

2. Низкая разрешающая способность, то есть невозможность обнаруживать близко расположенные неоднородности. (Отражения от неоднородностей вообще трудно различимы на импульсной характеристике кабельной линии, а отражения от соседних неоднородностей вообще сливаются друг с другом)

3. По импульсной характеристике невозможно получить ориентировки, расстояние до которых известно (в виде отражений от муфт, кабельных вставок и т.д.)

4. Большая погрешность измерения. (Это обусловлено относительно большими длительностями фронтов и срезов волновых процессов, которые формируются самой линией и процессом пробоя)

5. Невозможность стабильного повторения волновых процессов, что может привести к появлению ошибок.

(Процесс пробоя является очень нестабильным, он в любой момент может прерваться и не повториться в том же виде. Это накладывает очень серьезные требования к быстродействию измерителя волновых процессов).

Таким образом, волновой метод по сравнению с методом импульсной рефлектометрии, с одной стороны, позволяет определять сложные (с большим сопротивлением) и неустойчивые (заплывающие) места повреждений кабельных линий, а с другой стороны, имеет существенные недостатки. В значительной степени совместить достоинства метода импульсной рефлектометрии и волнового метода позволяет метод кратковременной дуги.

повреждение кабельный определение линия

2.4 Метод измерения частичных разрядов
В последние годы все более широкое распространение в нашей стране и за рубежом находит мнение о необходимости замены испытаний кабельных линий повышенным напряжением постоянного тока, превышающем рабочее напряжение в 3…6 раз рабочее напряжение (Uраб) на диагностику изоляции с помощью измерения частичных разрядов (ЧР), токов утечки, абсорбционных токов и других методов с приложением напряжения (1…1,5) Uраб.

Дело в том, что проведение испытаний кабеля, находящегося в эксплуатации продолжительное время, повышенным напряжением отрицательно влияет на изоляцию и снижает срок эксплуатации.

В отличие от испытаний диагностика изоляции кабельной линии относится к неразрушающим методам контроля. Одним из прогрессивных методов диагностики является метод измерения ЧР, позволяющий не только определить уровень частичных разрядов в кабельной линии, но и определить их местонахождение по длине.

Частичный разряд – это электрический разряд, длительность которого составляет единицы-десятки наносекунд. Частичный разряд частично шунтирует изоляцию кабельной линии. Частичные разряды появляются в слабом месте кабельной линии под воздействием переменного напряжения и приводят к постепенному развитию дефекта и разрушению изоляции.

Амплитудно-фазовые диаграммы (АФД) сегодня являются одним из основных методов представления информации о характеристиках частичных разрядов (ЧР) в изоляции оборудования. АФД обеспечивают необходимую информацию как для идентификации типов дефектов изоляции так и для выделения сигналов ЧР из помех. Кроме того, использование метода АФД при хранении информации обеспечивает минимизацию объема запоминаемых данных, что важно при создании экспертных систем. Высокая эффективность метода АФД обусловлена учетом стохастических свойств ЧР и использованием усредненных характеристик сигналов ЧР в амплитудно-фазовом пространстве.

Существующая на сегодняшний день аппаратура для измерения сигналов ЧР, как правило, регистрирует параметры каждого импульса ЧР, что обуславливает ее избыточную сложность и стоимость. Применение метода АФД не только при анализе данных, но и при измерении сигналов ЧР позволяет снизить стоимость аппаратуры регистрации ЧР. При этом резко сокращается избыточность регистрируемых данных и достигается оптимальное соответствие требуемой точности измерений, стоимости аппаратуры, объема накапливаемой информации и времени измерения.
    продолжение
--PAGE_BREAK--
еще рефераты
Еще работы по физике