Реферат: Ионообменная хроматография

В ионообменной хроматографии разделение компонентов смеси достигается за счет обратимого взаимодействия ионизирующихся веществ с ионными группами сорбента. Сохранение электронейтральности сорбента обеспечивается наличием способных к ионному обмену противоионов, расположенных в непосредственной близости к поверхности. Ион введенного образца, взаимодействуя с фиксированным зарядом сорбента, обменивается с противоионом. вещества, имеющие разное сродство к фиксированным зарядам, разделяются на анионитах или на катеонитах. Аниониты имеют на поверхности положительно заряженные группы и сорбируют из подвижной фазы анионы. Катиониты соответственно содержат группы с отрицательным зарядом, взаимодействующие с катионами. Амфотерные (биполярные) иониты содержат в своей матрице и катионные и анионные обмениваемые группы. Эти иониты способны образовывать внутренние соли, которые диссоциируют в контакте с электролитами и связывают оба их компонента. Амфотерные иониты легко регенерируются водой.

В качестве ПФ в ионообменной хроматографии используют ионные растворы (водные растворы солей, кислот и оснований), т.е. системы растворителей, имеющих высокое значение диэлектрической проницаемости и способность ионизировать соединения. Обычно работают с буферными растворами, поддерживающими определенные значения рН.

При хроматографическом разделении ионы анализируемого вещества конкурируют с ионами, содержащимися в элюенте, стремясь вступать во взаимодействие с противоположно заряженными группами сорбента. Отсюда следует, что ионообменную хроматографию можно применять для разделения любых соединений, которые могут быть каким-либо образом ионизированы.

Применяемые в ВЭЖХ ионообменные смолы представляют собой в основном сополимеры стирола и дивинилбензола. Относительное содержание дивинилбензола, определяющее степень сшивки скелета ионита выражают в массовых процентах дивинилбензола в мономерной смеси. Обычно добавляют 8-12% последнего. Чем больше содержание дивинилбензола, тем больше жесткость и прочность полимера, выше емкость и, как правило, селективность и тем меньше набухаемость.

Хроматографические материалы, содержащие сульфатные или триалкиламмонийные группы, являются сильными катионнообменниками и сильными анионообменниками и называются соответственно SCX и SAX. Слабые катионообменники и анионообменники получают на основе ионов карбоксилата -СОО- или аммония -NH3+ соответственно.

Ионообменная емкость сильных катионитов примерно постоянна в диапазоне рН=2-11, но падает до нуля при низких рН, поэтому они не могут быть использованы при рН<1. Сильные аниониты должны применяться при рН<11, слабые катиониты при рН>6, а слабые аниониты при рН<8. Сильные ионообменники могут быть использованы в более широком диапазоне рН, чем слабые. Этим объясняется широкое применение сильных ионитов, на которых может быть разделено большее количество веществ разных классов одновременно, особенно если применяют градиентное изменение рН. Прочно удерживаемые вещества, нестойкие при крайних значениях рН, целесообразно разделять на слабых ионитах. В отличие от сильных ионитов полностью ионизированых при рН=2-11, слабые иониты полностью ионизированы в ограниченной области рН, и их ионизацией можно управлять, варьируя рН элюента в пределах диапазона рабочих значений рН.

Подвижная фаза в ионообменной хроматографии должна обеспечивать растворимость различных солей и иметь свойства буферного раствора, необходимые для ионного обмена, контроля степени удерживания компонентов пробы и получения достаточной селективности разделения.

Удерживание в ионообменной хроматографии лимитируется двумя процессами: распределением компонента пробы между водной подвижной фазой и органической неподвижной и образованием ионных пар (т.е. анионного или катионного обмена), причем последний процесс является доминирующим.

Распределение вещества между фазами зависит от силы электростатического взаимодействия заряженных ионизированных групп вещества с заряженными группами ионообменника. Некоторые гидрофобные соединения или вещества, способные образовывать водородные связи, могут неспецифическим образом взаимодействовать с материалом матрицы.

Степень удерживания образца снижается с увеличением ионной силы подвижной фазы и увеличивается с увеличением ионообменной емкости сорбента. Ионная сила подвижной фазы возрастает при возрастании концентрации буфера и сохранении неизменным рН или при добавлении соли. Важна также концентрация буферных растворов, так как в растворе наблюдается конкуренция между ионами образца и буфера. Уменьшение концентрации буферного раствора увеличивает сродство смолы к образцу, что приводит к увеличению времени удерживания. Концентрация буферного раствора колеблется от 0.001 до 6 моль/л, причем верхняя граница определяется растворимостью соли, используемой в качестве буфера, а нижняя — самой буферной силой, так как в слабом буферном растворе нельзя контролировать уровень рН. Сильных буферных растворов также следует избегать из-за вероятности выпадения осадка и закупоривания колонок. Сила растворителя зависит от типа противоиона, причем степень удерживания образца увеличивается в ряду, обратном лиотропным сериям активности ионов, приведенным выше.

При анализе рН раствора выбирают таким образом, чтобы молекула сорбата была полностью ионизирована. Изменение рН подвижной фазы влияет на удерживание ионизированного сорбата — с повышением рН времена удерживания увеличиваются при анионообменном разделении и уменьшаются при катионообменном, т.е. происходит уменьшение силы растворителя при анионном и увеличение при катионном обмене. Наиболее заметно влияние градиента рН раствора вблизи значений рКa хроматографируемого образца.

Чаще всего в ионообменной хроматографии применяют следующие буферные растворы: ацетатный, фосфатный, цитратный, формиатный, аммиачный и боратный. Селективность разделения в ионообменной хроматографии зависит от концентрации и вида буферных ионов и органических растворителей, а также от рН среды. Ионообменное разделение можно проводить при повышенных температурах (40-60°С). Чем выше температура, тем меньше вязкость подвижной фазы. С другой стороны, более высокие температуры снижают стабильность колонки. Биохимические пробы для сохранения нативных структур и биологической активности принято разделять при низких температурах (4 — 20°С).

Добавка в подвижную фазу смешивающихся с водой органических растворителей (метанол, этанол, ацетонитрил, диоксан) действует аналогично добавке этих растворителей в ОФХ: элюирующая сила растет, удерживания образца снижается. Эффект более выражен для менее полярных растворителей. Добавлением органических растворителей можно добиться также изменения селективности хроматографической системы.

Таким образом, уменьшить времена удерживания в ионообменной хроматографии позволяют следующие факторы: 1) повышение температуры; 2) повышение концентрации буферного раствора; 3) снижение степени ионизации вещества за счет изменения рН.

В хроматографии биохимических смесей используют модифицированные целлюлозы — карбоксиметилцеллюлоза (слабокислотные свойства), диэтиламиноэтилцеллюлоза (среднеосновные свойства, а также гидрофильные гели декстрана (сефадексы). На их основе выпускают иониты с карбоксиметильными, диэтиламиноэтильными, сульфоэтильными, сульфопропильными и четвертичными основными группами (CM-, DEAE-, SE-, SP- и QAE-сефадексы). Декстрановые иониты подобны макропористым ионообменным смолам. Как и целлюлозные иониты они характеризуются высокой гидрофильностью, что важно при работе с биополимерами.

Таблица 4. Особенности ионообменной хроматографии.

Разделяемые вещества Любые способные к ионизации вещества, включая белки и нуклеиновые кислоты. Разделение за счет количества и природы ионизированных групп.
Механизм разделения Кулоновские взаимодействия заряженных групп. Разница в константах диссоциации
Сорбенты Сильные и слабые аниониты и катиониты на различных твердых или гелевых матрицах
Элюенты Буферные растворы
Достоинства Хорошо разделяет сложные смеси заряженных веществ
Недостатки Метод многофакторный, сложен в применении и оптимизации. Часто требуется градиентное элюирование. Относительно небольшая нагрузочная способность.
еще рефераты
Еще работы по биологии