Реферат: Автоматизированный электропривод цепного транспортёра

Автоматизированный электроприводцепного транспортера

Цепнойтранспортер предназначен для перемещения готового сорто­вого проката (рельсы,балки и т.н.) с рольганга на стеллаж охлаждения, от­куда изделия переносятся краном на склад готовой продукции. Кинемати­ческая схема транспортера показана на рис.4.Транспортер состоит из па­раллельных цепей между ведущими и ведомыми валами созвездочками колес сцепления. На цепях закреплены опрокидывающиеся заторыдля за­хвата транспортируемого металла.Между ведущим валом и двигателем находится понижающий редуктор.

Исходноеположение транспортера соответствует установке упоров между линией рольганга и ведомого вала. При наличии металла на оста­новленном рольганге транспортер приводится вдвижение и, захватив упо­рами изделие, перемещает его по направляющим  (на рис.1 не показаны) на стеллаж, затемреверсируется и возвращается в исходное положение. Если при этом на рольганге появилось новое изделие, то упоры при соприкосно­вениис ним опрокидываются и проходят под изделием, а затем пружин­ным приводомвозвращаются в исходное положение. Электропривод цеп­ного транспортера работаетв повторно-кратковременном режиме с пере­менной нагрузкой.

Рабочий циклцепного транспортера включает в себя:

<span Times New Roman",«serif»">■<span Times New Roman"">       

разгондо пониженной скорости на холостом ходу;

<span Times New Roman",«serif»">■<span Times New Roman"">       

подходупоров к изделию с пониженной скоростью и зацепление упорами изделия;

<span Times New Roman",«serif»">■<span Times New Roman"">       

разгондо рабочей скорости;

<span Times New Roman",«serif»">■<span Times New Roman"">       

транспортировкаизделия  на рабочей скорости;

<span Times New Roman",«serif»">■<span Times New Roman"">       

замедлениедо остановки (изделие помещается на стеллаж);

<span Times New Roman",«serif»">■<span Times New Roman"">       

разгонв обратном направлении до повышенной скорости;

<span Times New Roman",«serif»">■<span Times New Roman"">       

возвратупоров на холостом ходу с повышенной скоростью;

<span Times New Roman",«serif»">■<span Times New Roman"">       

замедлениедо остановки упоров в исходном положен;

<span Times New Roman",«serif»">■<span Times New Roman"">       

пауза(двигатель отключается);

<span Times New Roman",«serif»">■<span Times New Roman"">       

замедлениедо остановки упоров в исходном положен;

<span Times New Roman",«serif»">■<span Times New Roman"">      

пауза (двигатель отключается);

рис.1 Кинематическаясхема цепного транспортера

Таблица 1

Исходные данные по цепному транспортёру

Параметр

Обозначение

Значение 

Масса подвижной части  транспортера, т

2,7

Масса транспортируемого металла, т

0,6

Рабочий путь транспортера, м

5,8

Рабочая скорость, м/с

1,4

Радиус цапф, м

0,08

Радиус зацепления звездочек, м

0,2

Момент инерции транспор­тера, относительно оси ве­дущего вала, кг м2

1,32

Продолжительность вклю­чения, %

ПВ

48

Путь подхода упоров к из­делию, м

0,4

Отношение обратной ско­рости к рабочей скорости

2

Отношение пониженной скорости к рабочей скорости

0,5

Коэффициент трения в| подшипниках

0,05

Коэффициент трения металла о направляющие

0,4

КПД механических передач  при рабочей нагрузке

0,95

КПД механических передач при работе на холостом ходу

0,5

Цепной транспортер

Построим нагрузочную диаграммуцепного транспортера (график статических усилий перемещения рабочего органамеханизма). Расчет времени участков цикла на этапе предварительного выбора двигателявы­полняем приблизительно, т.к. пока нельзя определить время разгона и за­медления (суммарный момент инерции привода довыбора двигателя неиз­вестен).

Пониженная скорость транспортера:

Скорость обратного хода транспортера:

Усилие трения в подшипниках ведущего и ведомого валов,приведенное к радиусу звездочки (усилие холостого хода):

где  QUOTE    — ускорениесвободного падения (QUOTE   =9,81 м/с").           

 Усилие трения изделия о направляющие:

Суммарное усилие транспортировки изделия:

Время транспортировки (приблизительно):

Время подхода упоров к изделию (приблизительно):

Время возврата упоров (приблизительно)

Время работы в цикле (приблизительно)

Время паузы в цикле (приблизительно)

Эквивалентное статическое усилие за время работы в цикле:

При расчете требуемой номинальноймощности двигателя предпола­гаем, что будетвыбран двигатель, номинальные данные которого опреде­лены для повторно-кратковременного режима работы истандартного зна­чения продолжительности включения ПВы=40%. Номинальнойскорости двигателя должна соответствоватьскорость обратного хода транспортера, которая является максимальной скоростью взаданном рабочем цикле. Та­кое соответствие объясняется тем, что принятооднозонное регулирование скорости, осуществляемое вниз от номинальной скоростидвигателя.

Расчетнаяноминальная мощность двигателя

Предварительный выбор двигателя и расчет его параметров

Выбираем двигатель серии Д.номинальные данныедвигателей этой серии приведены в прил.1. Для цепноготранспортера выбираем двигатель с естественным охлаждением, номинальные данныекоторого определены для повторно-кратковременного режима работы спродолжительностью включения 40%.

Выбираем один двигатель, номинальная мощность которого неменьше расчетной номи­нальной мощности и наиболее близка к ней.

.

Данные двигателя сводим в таблицу (табл2). <span Times New Roman",«serif»">

<span Times New Roman",«serif»">

<span Times New Roman",«serif»">

<span Times New Roman",«serif»">

Таблица 2

Данные выбранного двигателя

<span Times New Roman",«serif»">

Параметр

Обозначение

Значение

Мощность номинальная кВт

9.5

Номинальное напряжения якоря В

220

Номинальный ток якоря

51

Номинальная частота вращения об/мин.

800

Максимально допустимый момент, Нм

319

Сопротивление обмотки якоря (Т-20 °С), Ом

0.2

Сопротивление обмотки добавочных полю­сов (Т-20 °С) Ом

0.08

Момент инерции якоря двигателя

0.425

Число пар полюсов

2

Максимально допустимый коэффициент пульсаций тока якоря

0.15

Для последующих расчетов потребуется ряд дополнительных дан­ныхдвигателя.

Сопротивление цепи якоря двигателя, приведенное к рабочейтемпе­ратуре:

где кт — коэффициент увеличения сопротивления принагреве до рабочей температуры  QUOTE   = 1,38 для изоляции класса Н при пересчете от20°С).

Номинальная ЭДС якоря:

Номинальная угловая скорость:

Конструктивная постоянная двигателя, умноженная на номиналь­ныймагнитный поток:

Номинальный момент двигателя:

Момент холостого хода двигателя:

Индуктивность цепи якоря двигателя:

В формуле  коэффициентС принимается  0,6

Расчет передаточного числа редуктора

Расчет передаточного числа редуктора  QUOTE   выполняется так, чтобы максимальной скоростирабочего органа механизма соответствовала номи­нальная скорость двигателя.

Для привода цепного транспортера:

Расчет и построение нагрузочной диаграммы двигателя

Для проверки предварительно выбранного двигателя по нагревувы­полним построение упрощенной нагрузочной диаграммы двигателя (т.е. временнойдиаграммы момента двигателя без учета электромагнитных пе­реходных процессов). Для ее построения произведемприведение моментов статическогосопротивления и рабочих скоростей к валу двигателя, опре­делим суммарныймомент инерции привода и зададимся динамическим моментом при разгоне изамедлении привода. Рассмотрим расчет нагру­зочной диаграммы двигателя отдельнодля каждого производственного ме­ханизма, предложенного в курсовом проекте. Порезультатам расчета строится нагрузочная диаграмма, а также тахограммадвигателя. Диаграм­мы необходимо строить с соблюдением масштаба. Длинныеучастки уста­новившихся режимов на диаграммах можно не показывать полностью, асделать разрыв.

Цепной транспортер

Момент статического сопротивления при транспортировке, приве­денныйк валу двигателя:

Момент статическогосопротивления при работе на холостом хо­ду, приведенный к валу двигателя:

Пониженная скорость,приведенная к валу двигателя:

Скорость прямого хода,приведенная к валу двигателя:

Скорость обратного хода,приведенная к вшу двигателя:

Суммарный момент инерциимеханической части привода

Модульдинамического момента двигателя поусловию максималь­ного использования двигателя по перегрузочной способности:

где к — коэффициент,учитывающий увеличение максимального момента на уточненной нагрузочнойдиаграмме; к=0,95.

Ускорение вала двигателя впереходных режимах

Ускорение транспортера впереходных режимах:

Разбиваем нагрузочную диаграммуна 9 интервалов. Общий вид  тахограммы инагрузочной диаграммы двигателя показан на рис. . Выпол­ним расчет нагрузочной диаграммы.

Интервал 1. Разгон допониженной скорости.

Продолжительность интервала1:

Путь, пройденный наинтервале 1

Момент двигателя на интервале 1

Интервал 4. Разгон от пониженной скорости до скоростипрямого хода

Продолжительность интервала 4:

Путь, пройденный на интервале 4:

Момент двигателя на интервале 4:

Интервал 6. Замедление от скорости прямого хода до остановки.

 Продолжительностьинтервала 6:

Путь, пройденный столом на интервале 6

Момент двигателя на интервале 6:

Интервал 7. Разгон до скорости обратного хода.

Продолжительность интервала 7:

Путь, пройденный столом на интервале 7:

Момент двигателя на интервале 7:

Интервал 9. Замедление от скорости обратного хода доостановки.

Продолжительность интервала 9:

Путь, пройденный столом на интервале 9:

Момент двигателя на интервале 9:

Интервал 2. Подход упоров к заготовке с пониженнойскоростью.

Путь, пройденный наинтервале 2:

Продолжительность интервала 2:

Момент двигателя на интервале 2

Интервал 3. Транспортировка на пониженной скорости.

Путь, пройденный на интервале 3 (принимается):

Продолжительность интервала 3:

Момент двигателя на интервале 3

Интервал 5. Транспортировка на скорости прямого хода.

 Путь, пройденный наинтервале 5:

Продолжительность интервала 5:

Момент двигателя на интервале 5:

Интервал 8. Возврат упоров со скоростью обратного хода.

Путь, пройденный на интервале 8:

Продолжительность интервала 8:

Проверка двигателя по нагреву

Для проверки выбранного двигателя по нагреву используемметод эквивалентного момента.

Используя нагрузочную диаграмму двигателя, определяем эквива­лентныйпо нагреву момент за время работы в цикле.

где n — число интервалов нагрузочной диаграммы, на которых двигатель находится вработе (интервалы пауз не учитываются).

Для механизмов, работающих в повторно-кратковременном режиме(лифт, сталкиватель блюмов и цепной транспортер), продолжительность включения врабочем цикле отличается от номинальной продолжительно­сти включения двигателя.Поэтому для этих приводов необходимо выпол­нитьприведение эквивалентного момента к номинальной продолжитель­ностивключения двигателя.

Проверка тепловогосостояния двигателя осуществляется сравнени­ем приведенногоэквивалентного момента с номинальным моментом дви­гателя. Двигатель проходит понагреву, если выполняется неравенство:

Выбор тиристорного преобразователя

Для обеспечения реверса двигателя и рекуперации энергиив тор­мозных режиму выбираем двухкомплектныйреверсивный преобразова­тель для питанияцепи якоря. Принимаем встречно-параллельную схему соединения комплектови раздельное управление комплектами'. Выбираем трехфазную мостовую схему тиристорного преобразователя. Проектирова­ниесамого тиристорного преобразователя не входит в задачи курсового  проектаПоэтому выбираем стандартный преобразователь, входящий в составкомплектного тиристорного электропривода КТЭУ:

Выбор силового трансформатора

При трансформаторном варианте связи с сетьюследует выбрать трансформатор типа ТСП — трехфазный двухобмоточный сухой сестест­венным воздушным охлаждением открытого исполнения (или ТСЗП — за­щищенногоисполнения). Номинальный вторичный ток трансформатора   QUOTE   должен соответствовать номинальному току тиристорногопреобразователя <span Cambria Math",«serif»">

 QUOTE  .  Эти токи для трехфазноймостовой схемы преобразователя связаныпо формуле:

Тип трансформатора

ТСП-25/0.7-УХЛ4

Схема соединения первичных и вторичных обмоток

Звездатреугольник

Номинальная мощность   QUOTE  

29.1

Номинальное линейное напряжение первичных обмоток  QUOTE  

380

Номинальное линейное напряжение вторичных обмоток    QUOTE  

205

Номинальный линейный ток вторичных обмоток   QUOTE  

82

Мощность потерь  короткого замыкания   QUOTE  

1100

Относительное напряжение короткого замыкания  QUOTE  

5.5 %

Рассчитаем параметрытрансформатора.

Коэффициент трансформации:

Номинальныйлинейный ток первичных обмоток

Активное сопротивление обмоток одной фазы трансформатора:

Активная составляющая напряжения короткого замыкания

Реактивная составляющая напряжения короткого замыкания

Индуктивное сопротивление обмоток фазы трансформатора:

Индуктивность обмоток одной фазы

где  QUOTE    угловаячастота сети (при частоте питающей сети 50 Гц Ц=314 рад/с).

Выбор сглаживающего реактора

Сглаживающийреактор включается в цепь выпрямленного тока пре­образователя с целью уменьшения переменной составляющей тока (пуль­саций). Пульсации выпрямленного тока должны бытьограничены на уров­не допустимогозначения для выбранного двигателя. Максимально допус­тимыйкоэффициент пульсации  QUOTE   задается в числе данных двигателяи представляет собой отношение действующегозначения переменной со­ставляющейтока якоря к его номинальному значению. Для расчета индук­тивности сглаживающего реактора определимтребуемую индуктивность всей главной цепи системы тиристорныйпреобразователь — двигатель» по условию ограничения пульсаций.

ЭДС преобразователя при угле управления  QUOTE  

где  QUOTE   — коэффициент, зависящий от схемы преобразователя (для трехфаз­ноймостовой схемы Ке=1,35).

Минимальнаяэквивалентная индуктивность главной цепи по усло­вию ограничения пульсаций выпрямленного тока:

Где  QUOTE    — коэффициент пульсацийнапряжения (для трехфазной мостовой схемы  QUOTE  );

р — пульсностьпреобразователя (для трехфазной мостовой схемы р=б).

  Расчетнаяиндуктивность сглаживающего реактора

Расчетная индуктивность отрицательная сглаживающий реакторне требуется.

Расчет параметров силовой части электропривода в абсолютных единицах

Главную цепь системы«тиристорный преобразователь — двигатель» можно представить в виде схемызамещения (рис 2). В главной цепи дей­ствуют ЭДС преобразователя  QUOTE   и ЭДС якоря двигателя  QUOTE    На схеме за­мещения показаныактивные сопротивления якорной цепи двигателя  QUOTE  ,  двух фаз трансформатора  QUOTE  , а также фик­тивное сопротивление  QUOTE  , обусловленное коммутацией тиристоров. Кроме  того,представлены индуктивности якорной цепи двигателяQUOTE   сглажи­вающего реактора  QUOTE   и двух фаз трансформатораQUOTE  . Направления тока и ЭДСсоответствуют двигательному режиму электропривода

 Рис2 Схемазамещения главной цепи

От исходной схемызамещения переходим к эквивалентной схеме (рис3), где все индуктивности объединяются в одну эквивалентную ин­дуктивность  QUOTE  , а все активные сопротивления — в одно эквивалентное со­противление QUOTE  

Рис 3 Эквивалентная семазамешения

Определим параметры силовой части в абсолютных (т.е. физических) единицах.

Фиктивное сопротивление преобразователя, обусловленноекоммутацией тиристоров:

Эквивалентное сопротивление главной цепи:

Эквивалентная индуктивность главной цепи:

Электромагнитная постоянная времени главной цепи:

Электромагнитная постоянная времени цепи якоря двигателя:

Коэффициент передачи преобразователя

где QUOTE  ноготока максимальна. В проекте примем  QUOTE  

Выбор базисных величин системы относительных единиц

<span Times New Roman",«serif»; letter-spacing:-.1pt">При рассмотрений модели силовой части электропривода какобъек­

<span Times New Roman",«serif»;letter-spacing: -.05pt">та управления параметры и переменные электропривода удобно перевести <span Times New Roman",«serif»">в систему относительных единиц.Переход к относительным единицам осуществляетсяпо формуле

<span Times New Roman",«serif»; letter-spacing:-.1pt">где

<span Times New Roman",«serif»;letter-spacing:-.1pt"> QUOTE <span Times New Roman",«serif»;letter-spacing: -.1pt"> <span Times New Roman",«serif»; letter-spacing:-.1pt"><span Times New Roman",«serif»;letter-spacing:-.1pt">  — значение в абсолютных (физических)единицах;  <span Times New Roman",«serif»;letter-spacing:-.1pt"> QUOTE <span Times New Roman",«serif»;letter-spacing: -.1pt"> <span Times New Roman",«serif»; letter-spacing:-.1pt"><span Times New Roman",«serif»;letter-spacing:-.1pt">-базисноезна­чение (также в абсолютных единицах); у — значение в относительных еди­<span Times New Roman",«serif»">ницах.

<span Times New Roman",«serif»;letter-spacing:-.1pt">Принимаемследующие основные базисные величины силовой части

<span Times New Roman",«serif»;letter-spacing:-.2pt">электропривода:

<span Times New Roman",«serif»">■<span Times New Roman""> 

<span Times New Roman",«serif»;letter-spacing:-.25pt">базисноенапряжение:<span Times New Roman",«serif»">

<span Times New Roman",«serif»">■<span Times New Roman""> 

<span Times New Roman",«serif»;letter-spacing:-.25pt">базисныйток:<span Times New Roman",«serif»">

<span Times New Roman",«serif»">■<span Times New Roman""> 

<span Times New Roman",«serif»;letter-spacing:-.2pt">базиснуюскорость:<span Cambria Math",«serif»">
<span Times New Roman",«serif»">

<span Times New Roman",«serif»">■базисный момент:

<span Cambria Math",«serif»">

<span Times New Roman",«serif»">■базисныймагнитный поток:

<span Times New Roman",«serif»">Базисныйток и базисное напряжение регулирующей части электро­привода выбираются так, чтобы они были соизмеримы с реальными уров­нями токов и напряжений в регулирующей части. Впроекте рекомендуется

<span Times New Roman",«serif»; letter-spacing:-.25pt">принять:

<span Times New Roman",«serif»">■базисноенапряжение системы регулирования:

<span Times New Roman",«serif»">■ базисный ток системы регулирования

<span Times New Roman",«serif»; letter-spacing:-.15pt">Рассчитаем производные базисные величины:

<span Arial",«sans-serif»">■

             базисноесопротивление для силовых цепей:

базисное сопротивление для системы регулирования

<span Times New Roman",«serif»; letter-spacing:-.1pt;mso-bidi-font-style:italic">Механическая постояннаявремени электропривода

<span Times New Roman",«serif»; letter-spacing:-.1pt">зависит от сум­<span Times New Roman",«serif»; letter-spacing:-.15pt">марного момента инерции и принятых базисных значенийскорости и мо­<span Times New Roman",«serif»">мента:Расчет параметров силовой части электропривода в относительных единицах

На рис.4  показанаструктурная схема модели силовой части элек­тропривода как объекта управления.Переменные модели выражены в от­носительныхединицах. В модель входят следующие звенья:

<span Times New Roman",«serif»">■<span Times New Roman"">      

 QUOTE  

<span Times New Roman",«serif»">■<span Times New Roman"">      

стоянной времени   QUOTE   и коэффициентом передачи, равным QUOTE  , т.е. эквива­лентной проводимости главной цепи в относительныхединицах;

<span Times New Roman",«serif»">■<span Times New Roman"">      

 QUOTE  

<span Times New Roman",«serif»">■<span Times New Roman"">      

звенья умножения на магнитный поток   QUOTE  (поток рассматривается в модели как постоянный параметр).

Входные величины моделипредставляют собой управляющее воз­действие  QUOTE    (сигнал управления на входепреобразователя) и возмущающее воздействие  QUOTE   (момент статическогосопротивления на валу двигателя).

Переменными модели  являются:

<span Times New Roman",«serif»">■<span Times New Roman"">      

QUOTE  

<span Times New Roman",«serif»">■<span Times New Roman"">      

ЭДС якоря двигателяQUOTE  ;

<span Times New Roman",«serif»">■<span Times New Roman"">      

ток якоря двигателяQUOTE  ;

<span Times New Roman",«serif»">■<span Times New Roman"">      

электромагнитный момент двигателя m;

<span Times New Roman",«serif»">■<span Times New Roman"">      

<span Times New Roman",«serif»;letter-spacing:-.2pt">угловаяскорость двигателя<span Times New Roman",«serif»; letter-spacing:-.2pt">QUOTE <span Times New Roman",«serif»;letter-spacing: -.2pt"> <span Times New Roman",«serif»; letter-spacing:-.2pt"><span Times New Roman",«serif»;letter-spacing:-.2pt">.<span Times New Roman",«serif»">

Рис 4 Структурная схема объекта управления

Определим параметры электропривода в относительных единицах:

<span Times New Roman",«serif»">■ коэффициентпередачи преобразователя:

<span Arial",«sans-serif»">■

эквивалентное сопротивлениеглавной цепи

<span Arial",«sans-serif»">■

сопротивление цепи якоря двигателя:

<span Arial",«sans-serif»">■

магнитный поток двигателя:Расчет коэффициентов передачи датчиков

Рассчитаем коэффициенты передачи датчиков в абсолютных едини­цахтак, чтобы при максимальном значении величины, измеряемой датчи­ком, напряжениена выходе датчика было равно базисному напряжению регулирующей части.

Коэффициент передачи датчика тока:

где  QUOTE  

Коэффициент передачидатчика напряжения:

Коэффициент передачидатчика скорости :

Рассчитаем коэффициенты датчиков в относительных единицах.

Коэффициент передачи датчика тока:

Коэффициент передачидатчика напряжения:

Коэффициент передачидатчика скорости:

Выбор типа системы управления электроприводом

Рассмотрим функциональнуюсхему системы управления электро­приводом (рис.). Система управленияэлектроприводом представляет собойдвухконтурную систему автоматического регулирования (САР) ско­рости. Внутренним контуром системы является контуррегулирования тока якоря, внешним иглавным контуром — контур регулирования скорости.Для проектируемогоэлектропривода выбираем однократную систе­мурегулирования скорости. Однократная САР скорости по сравнению с двукратной необладает астатизмом по возмущающему воздействию (мо­менту сопротивления),однако для проектируемой системы обеспечение такого астатизма не требуется.Однократная САР скорости обладает луч­шими динамическими свойствами посравнению с двукратной САР. Для контуров регулирования тока якоря и скоростиприменяется настройка на модульныйоптимум. Данную настройку обеспечивают пропорционально-интегральный регулятор тока (РТ) ипропорциональный регулятор скоро­сти (РС). Плавное ускорение и замедлениепривода обеспечиваются с по­мощью задатчика интенсивности (ЗИ). Для разгона илиторможения при­вода задатчикинтенсивности формирует линейно изменяющийся во вре­мени сигнал заданияна скорость. Сигналы обратных связейпоступают в систему регулирования от датчиковтока якоря (ДТ), напряжения якоря (ДН) и скорости (ДС). Датчи­ки состоят из измерительного элемента и устройствасогласования. Изме­рительным элементом для датчика тока якоря является шунт вцепи якоря  QUOTE  для датчика напряжения — делитель напряжения Rд,для датчика скоро­сти — тахогенератор (ТТ). Устройство согласованияобеспечивает необхо­димый коэффициентпередачи датчика и гальваническую развязку силовых Цепей от цепей управления. Косвенный датчик ЭДС(ДЭ) вычисляет ЭДС якоря посигналамдатчиков тока и напряжения. Сигнал ЭДС через звено компенсации (ЗК)подается на вход регулятора тока, что требуется для компенсации отрицательноговлияния ЭДС якоря на процессы в контуре тока

 

Рис 5 Функциональная схемасистемы управления Электроприводом

Некомпенсируемаяпостоянная времени  QUOTE  закладывается в фильтрах Ф1 иФ2.  Эти фильтры обеспечивают защитуобъекта управления от высо­кочастотных помех. ВеличинаQUOTE   принятаяпри проектировании системы, определяетбыстродействие контура регулирования тока и всей системы в целом.

Управляющим воздействиемна объект управления (силовую часть электропривода)является напряжение управленияQUOTE  . Напряжение управ­ленияподается на вход системы импульсно-фазового управления тири­сторногопреобразователя, которая регулирует угол управления, т.е. фазу подачиуправляющих импульсов на тиристоры.

Нелинейные элементы НЭ1 иНЭ2 предназначены для ограничения координат системы. Элемент НЭ1 ограничиваетвыходной сигнал регуля­тора тока, а следовательно, напряжение управленияпреобразователя и его выходную ЭДС. Элемент НЭ2 ограничивает выходной сигналрегулятора скорости, тем самым ограничивается сигнал задания тока и сам токякоря.

Расчет регулирующей части контура тока якоря

Расчет параметров математической модели контура тока

Рассмотрим структуру ивыполним расчет параметров модели конту­ра тока, используя систему относительных единиц. Структурная схема контура тока представлена на рис   . В контуре тока находятся звенья ре­гулятора тока (РТ), фильтра (Ф), тиристорногопреобразователя (ТП) и главной цепи(ГЦ). На структурной схеме фильтр показан внутри контура, что эквивалентно наличию фильтра в цепи задания иобратной связи (см. рис 6  ). Обратная связь по току при рассмотренииотносительных величин принимаетсяединичной. На процессы в контуре тока влияет ЭДС якоря двигателя, которую можносчитать возмущающим воздействием. При от­сутствии ЭДС якоря (якорь неподвижен)в контуре тока можно рассматри­ватьодно звено объекта управления с передаточной функцией:

Рис 6 Структурнаясхема регулирования тока якоря

Некомпенсируемую постояннуювремени  QUOTE   принимаем 0,01 с.

При синтезе регулятора токавлияние ЭДС якоря не учитывается. Передаточнаяфункция регулятора тока находится по условию настройки контура намодульный оптимум:

Получаем передаточнуюфункцию ПН-регулятора. Из (6)-(7) следу­ет, что параметры регулятора токанаходятся по следующим формулам:

Контуррегулирования тока при настройке на модульный оптимум описывается передаточной функцией фильтраБаттерворта 2-го порядка:

Влияние ЭДС якоря приводитк появлению статической ошибки по току, что ухудшает качество системы. Длякомпенсации данного влияния вводитсяположительная обратная связь по ЭДС якоря. Структурная схема контуратока с компенсацией ЭДС представлена на рис 8. При выносе фильтра из контура он должен оказаться в цепизадания на ток (Ф1), в цепи обратной связи по току (Ф2) и в цепиобратной связи по ЭДС, где его удобно объединить с датчиком ЭДС. Таким образом,датчик ЭДС имеет небольшую инерционность, что является необходимым, т.к.безынерцион­ный датчик ЭДС реализовать невозможно.

Рис7

Компенсирующий сигналQUOTE  , подается на вход регулятора тока, а непосредственно в точку действия ЭДСякоря (между звеньями ТП и ГЦ). Поэтому влияние звенев регулятора тока ипреобразователяна прохождение  компенсирующего сигнала необходимо ус

еще рефераты
Еще работы по технике