Реферат: Микроконтроллерная система взвешивания танков с жидким хлором

ВВЕДЕНИЕ

Микроконтроллерная система взвешивания танков с жидким хлором.

ЮРГТУ

Факультет ИИИТиУ

Кафедра АиТ

Выполнил студент

5-го курса

Евченко С.Е.

Новочеркасск

2003г.

ВВЕДЕНИЕ

По мере развития современной промышленности все большее число ее отраслей используют для различных нужд водород. Еще некоторое время назад водород как сырье имел весьма ограниченное значение, а в настоящее время мировая потребность в нем составляет десятки миллионов кубометров в час.

Современные промышленные методы получения водорода можно подразделить на две группы: химические и электрохимические. К химическим — относятся методы переработки твердых и тяжелых жидких топлив и углеводородных газов (коксового, природного, газов нефтепереработки и т.д.).

К электрохимическим методам производства водорода относится, прежде всего, электролиз воды, а также электролиз водных растворов NaCl для получения хлора и каустической соды; одновременно в качестве побочного продукта электролиза NaCl получается дешевый водород. Существенное количество водорода получается побочно также при электрохимическом производстве хлората натрия, перекиси водорода и некоторых других продуктов.

В отличие от всех перечисленных методов производства водорода при электролизе воды непосредственно получают и водород, и кислород высокой чистоты. В газах электролиза практически отсутствуют посторонние примеси, кроме паров воды и взаимных примесей одного газа в другом, что значительно упрощает очистку водорода. Благодаря отсутствию трудно устранимых и отравляющих примесей электролитический водород может быть использован в любых производствах. Он обладает особенными преимуществами в тех случаях, когда требуется высокая чистота газов.

Поэтому для синтеза полимеров, гидрогенизации жиров, каталитических процессов гидрирования, производство перекиси водорода, полупроводников и ряда других веществ — применяют электролитический водород.

Электролиз воды выгодно отличается от других методов получения водорода простотой технологической схемы, доступностью и дешевизной сырья — воды, высокой надежностью в эксплуатации, не сложностью в обслуживании установок.

Основным недостатком электрохимического метода получения водорода является его большая энергоемкость. В отличии от химических методов себестоимость электролитического водорода мало зависит от масштабов производства так как основные затраты (около 70 % себестоимости) приходится на расходуемую электроэнергию.

Целью диссертационной работы является создание многофун-кциональной автоматизированной системы управления, обеспечивающей безопасную эксплуатацию оборудования и протекание технологического процесса производства водорода.

Для достижения поставленной цели в работе решаются следующие задачи:

исследование технологического процесса получения водорода методом электролиза как объект автоматизации и управления;

выбор контролируемых и регулируемых параметров и разработать техническую структуру АСУТП;

построение моделей АСУ и алгоритмов обеспечения безопасности методом объектно-ориентированного моделирования;

разработка технических предложений по созданию двухуровневой АСУТП с определением ее функций и состава современного программного-технического комплекса;

разработка SCADA — реализации технологического процесса.

Методы исследования базируются на методологии целевого объектно-ориентированного подхода к решению задач исследования технологических объектов и построению достоверных и работоспособных моделей процессов и систем управления для их функционирования в режиме реального времени.

Новизна полученных результатов:

1. Методом объектно-ориентированного анализа построена модель обеспечения безопасности процесса в виде технологических алгоритмов. (Выбраны и обоснованы информативные параметры и управляющие воздействия; определены их взаимосвязи).

2. Разработана модель и программное обеспечение симулятора (имитатора), позволяющий в режиме реального времени исследовать процесс и технологию управления им. Это позволяет организовать отладку ПО в лабораторных условиях. Симулятор используется также для обучения персонала.

3. На базе Citect-Scada разработано прикладное программное обеспечение для АРМ оператора.

1 АНАЛИЗ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

ПОЛУЧЕНИЯ ВОДОРОДА КАК ОБЪЕКТА УПРАВЛЕНИЯ

Описание технологического процесса получения водорода

В рассматриваемом технологическом процессе водород получают методом электролиза воды, который состоит из следующих стадий:

приготовление дистиллята;

приготовление электролита;

электролизное разложение;

очистка водорода от кислорода;

заполнение ресиверного парка.

Процесс электролиза воды с получением водорода и кислорода описывается следующим уравнением:

Н2О = Н2 +1/2О2 (1.1)

Вследствие малой электропроводности воды, при электролизе применяется водный раствор электролита — едкого калия. При разложении воды на катоде выделяется водород, на аноде — кислород.

В щелочных растворах, где концентрация ионов водорода и доля их в переносе тока по раствору очень мала, выделение водорода на катоде происходит преимущественно за счет прямого разряда молекул воды с образованием атомов водорода и ионов ОН-:

2Н2О + 2е = 2ОН- + Н2 (1.2)

Выделение на аноде кислорода происходит за счет разряда ионов ОН-:

2ОН — 2е = Н2О + 1/2О2 (1.3)

При электролизе и переносе тока принимают участие все находящиеся в электролите ионы. Доля их участия определяется относительной концентрацией и подвижностью ионов. В щелочных электролитах в следствие очень низкой концентрации ионов водорода перенос тока осуществляется почти исключительно ионами и гидроксидами ОН-.

На катоде разряжаются практически только молекулы воды, на аноде — ионы ОН-, ионы Н+, участвующие в переносе тока к катоду, так же как

Cl-SO42 и другие аониды, участвующие к аноду, на электродах не разряжаются в переносе тока.

В процессе электролиза дистиллированная вода расходуется на производство водорода и кислорода, а также уносится в виде паров с выработанными парами.

Для приготовления дистиллята используется пар, который поступает в дистиллятор поз. 1. Далее дистиллят подается в емкость накопления поз. 2. При наполнении емкости вода сбрасывается в сточные воды. Из емкости накопления дистиллят подается в емкость приготовления электролита поз. 3.

В качестве электролита для применяется раствор с массовой едкого кали (20-30%).Тв6ердое едкое кали в виде гранул поставляется в стальных барабанах весом по 50кг. Щелочь из барабанов высыпается в передвижной бункер, который посредством ручной толи транспортируется на верхнюю площадку растворителей щелочи. Где через разгрузочный люк бункера щелочь засыпается в корзину растворителя, куда подается через щелочь струя воды под давлением, создаваемое насосом. Растворенная в корзине щелочь свободно стекает и растворитель, и раствор снова подается в корзину до полного растворения щелочи. Растворение продолжается до получения концентрированного раствора электролита. По окончанию растворения щелочи, раствор откачивается в емкость, где массовая доля едкого кали в растворе добавлением воды доводится до (20-30)% или откачивается через фильтр непосредственно в электролизеры для корректировки концентрации электролита.

При хранении электролита необходимо исключать его контакт с воздухом для уменьшения вероятности образования карбонатов, ускоряющих коррозийные процессы в электролизерах.

Для устойчивой и более надежной работы электролизеров в электролит вводится двухромовокислый калий К2С2О7 в таком количестве, чтобы массовая концентрация его в электролите составляла 2-3 кг/м3. Рассчитанное количество К2С2О7 растворяется в горячей воде, раствор двухромовокислого калия подается непосредственно в электролизере.

Готовый электролит заполняет питательный бак поз. 4. Уровень в питательном баке должен занимать не менее 33%. Электролит самотеком поступает в электролизеры.

Процесс электролиза осуществляется в электролизерах типа ЭФ 24/12-12. Техническая характеристика электролизера типа ЭФ 24/12-12 приведена в таблице 1.1.

Электролизер ЭФ представляет собой ряд стальных рам круглого сечения с диафрагмами и электродами. Каждая ячейка электролизера (рисунок 1.1) состоит из рамы с асбестовой диафрагмой, одного основного и двух выносных электродов, расположенных по обе стороны диафрагмы. Диафрагмы: прикреплены к рамам на заклепках. Основной электрод, служащий разделительной стенкой ячейки, выполнен из сплошного стального листа (3 мм),выносные электроды — из перфорированных листов (2 мм).В одной ячейке основной электрод служит, анодом, а другой — катодом. Выносной катод размещен на большем расстоянии от основного электрода, чем выносной анод, что находится в соответствии с большим объемом газа, выделяющимся на катоде.Основные электроды изолированы от диафрагменных рам при помощи прокладок из паротита.

Все ячейки плотно прижаты друг к другу и стянуты между концевыми стальными плитами четырьмя стяжными болтами. Для упругости системы (возможны усадки прокладок) по концам стяжных болтов предусмотрены тарельчатые пружины. В верхней части каждой ячейки имеются два отверстия: одно для отвода водорода, другое — кислорода. В нижней части ячейки имеется одно отверстие — для ввода электролита.

Таблица 1.1 — Техническая характеристика электролизера типа ЭФ 24/12-12

Наименование показателей

Единица измерения

Электролизер ЭФ24/12-12

Производительность по водороду

м3/час

25

Производительность по кислороду

м3/час

12,5

Рабочее давление

атм

12

Рабочая температура электролита

75-80

Число ячеек

__

100

Напряжение на ячейку

В

2,3

Напряжение на электролизер

В

230

Сила тока

А

1000

Мощность электролизера

кВт-ч

200

Отверстия при помощи трубок 7соединены с кольцами 8, которыеобразуют два верхних клапана для сбора газов и один нижний — для пита­ния электролизера электролитом.

Электрический ток подводится к крайним монополярным электродам. Из основных частей электролизера никелируются: а) рамы с припаренными трубками, газовыми и питательным каналами; б) основные электроды с анодной стороны; в) выносные электроды с двух сторон; г) концевая анодная плита (со стороны выносного электрода).

<
Выходящие из электролизера поз. 5/1-5/4газы (водород и кислород) прежде всего направляются разделительные колонки 6/1-6/4,7/1-7/4,где происходит предварительно разде­ление электролита и газа. Для охлаж­дения электролита разделительные колон­ки снабжены змеевиковыми холодильниками. Охлажденный электролит из разделительных колонок самоте­ком возвращается в электролизер.>

Рисунок 1.1 — Ячейки электролизера ЭФ-12 в собранном виде

Изразделительных колонок газы поступают в промыватели поз. 8/1-8/4, 10/1-10/4, где происходит барботирование черезслои жидкости, освобождаются от остатков электролита. Промыватели также оборудованы змеевиковымихолодиль­никами, служащими для охлаждения газа. В качестве жидкости для промывки газов применяется дистиллиро­ванная вода, которая после улавливания электролита может быть использована в процессе.

Промыватели соединены с регуляторами давленияпоз.9/1-9/4,11/0-11/4, служащими для выравнивания давления в обоих газовых пространствах электролизера.

Пройдя регуляторы давления, газыотводятся: водород, с содержанием объемной доли кислорода не более 1%, в отделение очистки на очистку от примеси кислорода, а кислород, с содержанием объемной доли водорода не более 2%, в реcиверный парк кислорода поз. 13/1-13/2 или гидрозатвор поз. 12 в атмосферу.

Очистка водорода от примеси кислорода многоуровневая. Водород после подогрева поз. 14 поступает в контактном аппарате поз. 16, где газы проходят слои разогретого потоком водорода палладиевого катализатора от плюс 100 до 140 0С.

При этом водород взаимодействует с содержащимся в нем кислородом, образуя воду.

2Н2 + О2 = 2Н2О + 242,0 кДж (57,8 ккал)

Реакция экзотермическая и проходит с выделением тепла. В качестве катализатора применяется палладиевый катализатор: Хлористый палладий, нанесенный на носитель. Такой катализатор обеспечивает требуемую степень очистки водорода до содержания объемной доли кислорода в нем не более 0,0005%.

После контактного аппарата, где вследствие протекания реакции соединения водорода с кислородом температура поднимается до (120-180)0С. Водород охлаждается в холодильнике поз. 17, при этом пары воды, образовавшиеся при каталитической очистке частично конденсируются и отделяются во влагоотделение поз. 20, и далее сбрасывается в сборник продувок. Из влагоотделтиеля поз. 20 подогретый электронагревателем поз. 15 водород поступает в осушитель первой ступени далее второй ступени.

В холодильниках 23-42 водород охлаждается и подается на механическую очистку поз. 27-28. Очищенный водород поступает на заполнения ресиверного парка. В сборнике продувок поз. 29 собирается конденсат, который сбрасывается в сливной бак, откуда откачивается насосом.

При максимальном заполнении парка водородом его избыток сбрасывается в атмосферу через газо-сбросную трубу.

Основные физико-химические свойства водорода

и характеристика исходного сырья

К основным физико-химическим свойствам водорода относятся то, что водород — самый легкий из газов, не имеет цвета и запаха, легко воспламеняется и горит синеватым, мало светящимся пламенем. Его молекулярный вес — 2,016, а удельный вес при температуре 0 0С и давлении 760 мм.рт.ст. составляет 0,09г/мм3 кипит водород при температуре — 252,7 0С, а плавится при -259,4 0С относительная плотность — 0,0695.

При повышении температуры и давления водород диффундирует в металлы. В обычных условиях при комнатной температуре, молекулы водорода малоактивны. Реакционная способность водорода значительно возрастает при нагревании, под действием света, электрической искры и электрического разряда, в присутствии катализатора. Водород вступает в химические соединения со многими элементами. На воздухе и в чистом кислороде водород сгорает, образуя воду. При отношении Н2: О2 = 2:1 образуется гремучая смесь взрывается при пропускании электрической искры или поджигании. В присутствии катализаторов (платины, никеля, железа и др.) водород-кислородная смесь взрывается при незначительном нагревании. Смеси водорода с кислородом и воздухом взрывоопасные в широком интервале концентраций водорода. Пределы взрываемости и самовоспламенения водорода приведены в таблице 1.2.

Таблица 1.2 — Взрываемость и огнеопасность водорода

<p style=«text-indent: 0.00mm; text-align: left; line-height: 4.166667mm; color: Black; background-color:

еще рефераты
Еще работы по радиоэлектронике