Реферат: Химический состав и огнеупорность шамотных изделий

НМетАУ

 

 

 

 

 

 

Реферат на темы:

 

 

<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>1.    

Химический состав и огнеупорность шамотных изделий

<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>2.    

Объяснить понятие «открытая пористость»

 

 

<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>по предмету:

«Огнеупорные неметаллические материалы»

 

 

 

 

Выполнил:

Студент гр. ПН-08

Храпко Н.И.

Проверил:

Погребная Н.Э.

 

 

 

 

Днепропетровск

2010 г.

1.     <span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>Шамотные изделия

<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»> 

Шамот (франц. chamotte), огнеупорная глина или каолин, обожжённые до потери пластичности, удаления химически связанной воды и той или иной степени спекания. Иногда Ш. называют также некоторые другие исходные материалы для производства огнеупоров, обожжённые с целью окускования порошков (нередко в смеси с глиной) и стабилизации свойств материала (высокоглинозёмистый, корундовый, цирконовый «Ш.»). Ш. получают обжигом (преимущественно при 1300—1500 °С) во вращающихся, шахтных или других печах исходного сырья в виде естественных кусков или брикетов, приготовленных на ленточных, вальцевых и других прессах. Степень спекания Ш. характеризуется водопоглощением, которое обычно составляет от 2—3 до 8—10% (для «низкожжённого» шамота 20—25%). После дробления и измельчения Ш. применяют в качестве отощающего (уменьшение пластичности и усадки при сушке и обжиге) компонента шамотных масс при формовании изделий (или, соответственно, высокоглинозёмистых и других огнеупоров), изготовлении мертелей, торкрет-масс, в качестве заполнителя огнеупорных бетонов и т.д. В середине 20 в. Ш. начали применять и в скульптуре (преимущественно небольшие статуэтки).

<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»> 

Характеристика:

1.                     Достаточная механическая прочность;

2.                     Хорошая сопротивляемость длительным механическим нагрузкам при температуре службы (высокая жаростойкость);

3.                     Способность огнеупора выдерживать в течение длительного времени достаточно большие скорости подъема, снижения (термостойкость);

4.                     Постоянство объема огнеупора при температуре службе, т.е. незначительные величины его дополнительной усадки или дополнительного роста;

5.                     Правильность формы, точность размеров и внешний вид в соответствии с техническими условиями.

 

 

ГОСТ 390-96

Основной компонент – Al2O3 – не менее 30%

 

Наименование продукции:

1.                     Горелочные камни для газовых горелок котельных ДКВР-10/13; ДКВР-6,5/13; ДКВР-20/13

2.                     Горелочные огнеупоры для печей хлебозавода:

<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>Г4-ХПФ-21.002 – кольцо топочное;

<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>Г4-ХПФ-21.004 – футеровка трубы.

3.                     Шамотные огнеупоры несложной конфигурации по чертежам заказчика.

4.                     Шамотный порошок.

 

Шамотные огнеупорные изделия<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>, наиболее распространённый вид алюмосиликатных огнеупорных изделий. Содержат 28—45% Al2O3. Изготовляются из огнеупорных глин и каолинов, отощённых шамотом, реже непластичной глинистой породой, кварцем. Применяются в доменных, нагревательных, обжиговых печах, при разливке стали и т.д.

Алюмосиликатные огнеупорные изделия<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>, состоят преимущественно из глинозёма (Al2O3) и кремнезёма (SiO2), получаются обжигом при t 1250—1450°С (при высоком содержании глинозёма — до 1750°С), обеспечивающей превращения исходных минералов в новообразования. Различают А. о. и.: полукислые (до 28% Al2O3, 65—85% SiO2), шамотные (28—45% Al2O3) и высокоглинозёмистые (свыше 45% Al2O3).

Полукислые и шамотные А. о. и. изготовляют из глины или каолина, смешанных с измельченным шамотом. В полукислые может добавляться кварц, обычно в виде песка. Шамотные А. о. и. на основе каолина называются также каолиновыми, а содержащие более 70% шамота — многошамотными. Высокоглинозёмистые А. о. и. получают из горных пород, содержащих больше 45% Al2O3, а также из искусственных материалов (технического глинозёма, электрокорунда). Высокоглинозёмистые А. о. и. подразделяются на муллитокремнезёмистые (45—62% Al2O3), муллитовые (62—72%), муллитокорундовые (72—90% ) и корундовые (свыше 90% ).

 

Изготовляют А. о. и. прессованием полусухих (увлажнённых до 6—9%) порошкообразных масс на механических или гидравлических прессах. Некоторые виды изделий, преимущественно фасонные сложной конфигурации, формуют из пластичных масс с влажностью 17—22%. Обжигают изделия в промышленных печах, большей частью туннельных непрерывного действия. Виды и размеры изделий различны: кирпичи простой формы, плиты, трубы, мелкие и крупные изделия сложной формы и др.

Свойства А. о. и. (см. таблицу) отличаются большим разнообразием в зависимости от используемого сырья и способов обработки.

Основные свойства алюмосиликатных огнеупорных изделий, наиболее распространённых в СССР

 

Показатели

Полукислые изделия

Шамотные изделия

Высокоглинозёмистые изделия

класс А

класс Б

класс А

класс Б

ВГО-62

ВГУ-62

ВГО-72

Огнеупорность, не ниже, °С

1710

1670

1730

1670

1800

1800

1800

Пористость кажущаяся, не выше, %

27

30

30

30

24

17

24

Предел прочности при сжатии, не ниже, Мн/м2*

10

 

15

 

12,5

 

12,5

 

25

 

60

 

30

Шлакоустойчивость

умеренная

умеренная

хорошая

Хорошая

Хорошая

отличная

отличная

Термостойкость

хорошая

умеренная

хорошая

хорошая

хорошая

умеренная

хорошая

 

2.  ПОРИСТОСТЬ

Пористость – одна из важнейших характеристик теплоизоляционных материалов, позволяющая оценивать долю (процентное содержание) газовой (воздушной) фазы в объеме материала. Принято подразделять пористость на истинную (общую), открытую и закрытую.

Истинная пористость характеризует отношение общего объема всех пор к объему материала (в долях или процентах).

Открытая пористость<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»> – отношение общего объема сообщающихся пор к объему материала (определяется экспериментально путем водонасыщения).

Закрытая пористость характеризует объем закрытых пор в объеме материала.

Для зернистых материалов (засыпной теплоизоляции) введено понятие пустотности, которая характеризует объем межзерновой пористости.

Значения пористости для теплоизоляционных материалов различной пористой структуры.

Ячеистый бетон (ячеистая структура) – истинная пористость 85- 90%, открытая пористость 40 – 50%,закрытая пористость 40 — 45%;

Пеностекло (ячеистая структура) – истинная пористость 85- 90%, открытая пористость 2 – 5%, закрытая пористость 83 — 85%;

Пенопласты (ячеистая структура) – истинная пористость 92- 99%, открытая пористость 1– 55%, закрытая пористость 45 – 98%;

Минераловатные материалы (волокнистая структура) – истинная пористость 85 — 92%, открытая пористость 85 – 92%, закрытая пористость 0%;

Перлитовые материалы (зернистая структура) – истинная пористость 85 — 88%, открытая пористость 60– 65%, закрытая пористость 22 – 25%.

Объем истинной пористости определяется содержанием в материале каркасообразующих элементов (волокон, зерен, мембран, образующих межпоровые перегородки в ячеистых структурах), прочностью этих элементов и образованного ими каркаса. Чем выше прочность структурообразующего материала и чем прочнее связи между элементами каркаса, тем больше может быть истинная пористость теплоизоляционного материала.

Для материалов с волокнистой и зернистой структурой значения истинной пористости не являются величинами постоянными, так как даже при небольшой нагрузке истинная пористость снижается за счет уплотняемости. После снятия нагрузки у волокнистых материалов возможно частичное восстановление истинной пористости за счет упругого последействия волокон.

В технологии теплоизоляционных материалов применяют ряд приемов для повышения истинной пористости. Для материалов с волокнистой структурой это достигается путем уменьшения диаметра волокна до предела, обеспечивающего малую сминаемость минеральной ваты, снижением содержания связующего в материале за счет повышения его адгезионных и когезионных свойств, а также путем направленного ориентирования волокон по отношению к нагрузке при эксплуатации материалов. Для материалов с зернистой структурой – применением зерен монодисперсного гранулометрического состава, повышением их прочности, увеличением внутризерновой пористости, снижением расхода связующего путем уменьшения его вязкости, поризацией связующего. Для материалов с ячеистой структурой – повышением прочности межпоровых перегородок и уменьшением их толщины.

Повышение общей пористости может быть также достигнуто конструкционными приемами, путем снижения эксплуатационной нагрузки на теплоизоляционный слой конструкции.

<span style=«font-size: 14pt; line-height: 150%; font-family: „Times New Roman“;»>Открытая пористость ухудшает эксплуатационные свойства

теплоизоляционных материалов, являясь причиной проникновения влаги и газов вглубь изделий. Это способствует резкому повышению теплоемкости и теплопроводности теплоизоляции, интенсификации химической и физической коррозии твердой фазы.

Закрытая пористость обеспечивает повышенную эксплуатационную стойкость строительной теплоизоляции. При производстве теплоизоляционных материалов с ячеистой структурой закрытая пористость стремятся увеличить. Это достигается оптимизацией процесса порообразования путем направленного регулирования его кинетики и реологических характеристик формовочных смесей.

Однако при устройстве высокотемпературной теплоизоляции предпочтение отдается материалам с волокнистой структурой, они намного лучше выдерживают резкие колебания температуры, так как элементы, слагающие их структуру, способны деформироваться без разрушения каркаса и релаксировать за счет этого температурные напряжения.

Размер и форма пор оказывает существенное влияние не только на теплопроводность теплоизоляционных материалов, но и на их прочностные характеристики. Снижение размера пор в материалах с любой структурой до определенного размера в зависимости от прочности и степени связности каркасообразующего материала является одним из эффективных приемов повышения прочности высокопористых изделий.

Форма пор также оказывает влияние на прочность теплоизоляционных материалов. Наилучшие показатели прочности имеют ячеистые и зернистые материалы со сферическими порами и зернами. Форма пор является причиной анизотропии свойств теплоизоляционных материалов. Материал с продолговатыми или эллиптическими порами неравнопрочен. Его прочность ниже при положении нагрузки параллельно короткой оси. Для теплопроводности же наблюдается обратная зависимость.

 

еще рефераты
Еще работы по металлургии