Реферат: Комплексные числа

ГЛАВА 1.КОМПЛЕКСНЫЕ ЧИСЛА И ФУНКЦИИ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ

Комплексные числа

Множество комплексных чисел. Обозначим через С – множество всех упорядоченных пар действительных чисел. Будем обозначать их. Определим на этом множестве операции сложения и умножения.

Суммой двух упорядоченных пар и назовем упорядоченную пару .

Произведением двух упорядоченных пар и назовем упорядоченную пару .

Две упорядоченные пары называются равными, если х1= х2, y1= y2.

Определение 1. Множество С упорядоченных пар z=(х, y), с введенными на нем операциями сложения или умножения, называется множеством комплексных чисел.

Рассмотрим частный случай, возьмем комплексные числа (х1, 0) и (х2, 0).

;

;

.

Таким образом, в результате сложения и умножения комплексных чисел (х, ) получили комплексное число такого же вида, а при умножении на (х, y) получили пару, в которой каждый элемент умножается на х1. Поэтому комплексное число (х, 0) можно отождествить с вещественным числом х. Следовательно, множество R оказывается вложенным в множество комплексных чисел С.

Введем обозначение. Тогда.Число (1,0)=1 будем называть действительной единицей, а число (0,1)=i -мнимой единицей.

Тогда любое комплексное число можно записать в алгебраическом виде:

, .

Число х называется действительной частью комплексного числа, а yмнимой частью комплексного числа. Обозначается

Сложение и умножение комплексных чисел обладают свойствами аналогичными свойствам действительных чисел:

1) ;

2) ;

3) ;

4) ;

5) ;

6) ;

7) ;

8), где ;

9) .

Поскольку, существует нулевой и единичный элемент, то можно ввести операции вычитания и деления комплексных чисел.

Разностью комплексных чисел z1 и z2 называется комплексное число z такое, что .

Частным от деления называется комплексное число z такое, что. Частное можно найти следующим образом:

.

Замечание. Из определения комплексного числа в алгебраической форме и правил арифметических действий следует, что арифметической операции комплексных чисел можно пользоваться правилами действия с алгебраическими двучленами, учитывая, что i2=-1, 1/i=-i.

Комплексное число называется комплексным сопряженным с комплексным числом .

Свойства сопряженных комплексных чисел:

1)

2)

3)

На множестве комплексных чисел можно решать квадратные уравнения с отрицательным дискриминантом. Например,

.

Геометрическая интерпретация.Поскольку комплексное число

 

y M(x,y)

ρ

φ

O x

Рис.1.

определяется как пара действительных чисел, то можно установить соответствие множества комплексных чисел и множеством точек плоскости. Естественно, геометрической интерпретацией множества комплексных чисел является представление их точками или векторами в декартовой системе координат на плоскости. При этом комплексному числу z=0 ставится в соответствие начало координат. Такую плоскость будем называть комплексной плоскостью. Ось абсцисс (ОХ) будем называть действительной осью, а ось ординат (ОУ)- мнимой осью комплексной плоскости.

Таким образом, устанавливается взаимно однозначное соответствие множества комплексных чисел и множества точек комплексной плоскости (x, y), а также множеством радиус-векторов, проекции которых на действительную и мнимую оси равны x и y. Такое соответствие позволяет отождествлять операции сложения и вычитания комплексных чисел с операциями сложения и вычитания соответствующих им радиус-векторов.

Тригонометрическая и показательная формы. Число называется модулем комплексного числа z и обозначается Полярный угол φ между положительным направлением оси Ох и радиусом вектором ОМ называется аргументом комплексного числа z и обозначатся Он определяется не однозначно, а с точностью до слагаемого, кратного 2π:, где есть главное значение Argz, определяемое из условия

Итак, поскольку

 

 

Эта формула называется тригонометрической формой комплексного числа.

Такая форма комплексных чисел удобна для операций умножения, деления и возведения в степень. Действительно, пусть, – два комплексных числа. Тогда, с помощью соответствующих тригонометрических формул и метода математической индукции легко показать, что справедливы следующие операции над комплексными числами в тригонометрической

,

,

( формула Муавра.)

Обратная операция, извлечение корня, определяется следующим образом:

комплексное число w, называется корнем n-ой степени из числа z, если, то. Для выполнения этой операции также удобна тригонометрическая форма записи комплексных чисел. Так, если, то

( + ), k=0,1,…,n-1.

Из последней формулы следует, что корень n-ой степени имеет n различных значений. Все значения корня имеют одинаковый модуль, но различный аргумент. На плоскости все значения корня будут лежать в вершинах правильного n-угольника, вписанного в окружность радиуса c центром в начале координат. Из формулы Муавра следуют 2 свойства:

,

Обозначим выражение символом еiφ, т.е.

еiφ= .

Используя тригонометрические формулы, можно показать, что эта комплексно-значная функция действительного переменного φ обладает всеми свойствами показательной функции, а сама формула называется формулой Эйлера. Тогда комплексное число, записанное в тригонометрической форме, можно представить в виде:

= ∙ еiφ.

Это показательная форма комплексного числа. Из формул умножения и деления комплексных чисел в тригонометрической форме очевидны следующие формулы:

∙ ;

;

.

мер 1.Найти все решения уравнения .

□,; =-3i± =-3i±5i.

,, .

,, − .

(cos ),

, k=0,1.

k=0, ,

k=1, ,

k=0, ,

k=1,. ■

 

еще рефераты
Еще работы по математике