Реферат: Испытание электрооборудования

Факультет менеджмента

Кафедра Стандартизации, сертификации и управления качеством

Испытание электрооборудования

(курсовая работа по дисциплине: «Методы и средства измерений, испытания и контроль»)

Оглавление

Введение

Испытания электрооборудования

1.1. Основные понятия

1.2. Общие методические указания по испытаниям

электрооборудования

2. Нормы испытаний электрооборудования на примере

электродвигателей переменного тока

2.1.Испытания электродвигателей переменного тока

3. Метрологическое обеспечение

Заключение

Список использованной литературы

Введение

Электрооборудование — это совокупность электротехнических устройств, предназначенных для выполнения определенных функций. Оно может обеспечивать безопасную и надежную работу, если конструкционное исполнение соответствует условию окружающей среды и режимам работы.

Электрооборудование с нормальной изоляцией — электрооборудование, предназначенное для применения в электроустановках, подверженных действию атмосферных перенапряжений, при обычных мерах по грозозащите.

Электрооборудование с облегченной изоляцией — электрооборудование, предназначенное для применения лишь в электроустановках, не подверженных действию атмосферных перенапряжений, или при специальных мерах по грозозащите, ограничивающих амплитуду атмосферных перенапряжений до значений, не превышающих амплитуду одноминутного испытательного напряжения частоты 50 Гц.

Современный электромотор1состоит из двух частей – ротора, связанного с механизмом, который приводится в движение, и статора, на котором расположена обмотка возбуждения.

Все электродвигатели можно разделить на две группы: постоянного и переменного тока. Электромоторы первой группы позволяют плавно регулировать частоту вращения в широком диапазоне, поэтому они незаменимы для привода транспортных и подъемных средств в крановых, экскаваторных двигателях. Электромоторы переменного тока отличаются простотой устройства, доступной ценой и неприхотливостью в эксплуатации. Основной недостаток таких электродвигателей – невозможность плавно регулировать частоту вращения.

В зависимости от отношения к частоте электрической сети различают синхронные (постоянное) и асинхронные (непостоянное) электродвигатели переменного тока. Синхронные электродвигателииспользуются в таких установках, как воздуховоды, гидравлические насосы и т.д. Асинхронные электродвигатели могут применяться как в бытовой технике (асинхронные двигатели малой мощности), так и в производстве (грузовые лебедки, крановые установки общепромышленного значения и т.д.). По степени защиты различают брызгозащитное исполнение(защита от попадания капель под углом 600) и закрытое (защита от попадания твердых тел диаметром до 1 мм и брызг воды под любым углом).

Испытания2– это разновидность контроля. В систему испытаний входят следующие основные элементы:

а) объект испытаний – изделие, подвергаемое испытаниям. Главным признаком объекта испытаний является то, что по результатам испытаний принимается решение именно по этому объекту: о его годности или браковке, о возможности предъявления на последующие испытания, о возможности серийного выпуска и т.п. Характеристики свойств объекта при испытаниях можно определить путем измерений, анализов или диагностирования;

б) условия испытаний – это совокупность воздействующих факторов и (или) режимов функционирования объекта при испытаниях. Условия испытаний могут быть реальными или моделируемыми, предусматривать определение характеристик объекта при его функционировании и отсутствии функционирования, при наличии воздействий или после их приложения;

в) средства испытаний – это технические устройства, необходимые для проведения испытаний. Сюда входят средства измерений, испытательное оборудование и вспомогательные технические устройства;

г) исполнители испытаний – это персонал, участвующий в процессе испытаний. К нему предъявляются требования по квалификации, образованию, опыту работы и другим критериям;

д) нормативно-техническая документация (НТД) на испытания, которую составляют комплекс стандартов, регламентирующих организационно-методические и нормативно-технические основы испытаний; комплекс стандартов системы разработки и постановки продукции на производство; нормативно-технические и технические документы, регламентирующие требования к продукции и методам испытаний; Нормативно-технические документы, регламентирующие требования к средствам испытаний и порядок их использования.

Испытания как основная форма контроля электрооборудования представляют собой экспериментальное определение количественных и качественных показателей свойств изделия как результата воздействия на него при его функционировании, а также при моделировании объекта.

Цели испытаний различны на различных этапах проектирования и изготовления электрооборудования. К основным целям испытаний можно отнести:

а) выбор оптимальных конструктивно-технологических решений при создании новых изделий;

б) доводку изделий до необходимого уровня качества;

в) объективную оценку качества изделий при их постановке на производство и в процессе производства;

г) гарантирование качества изделий при международном товарообмене.

Испытания служат эффективным средством повышения качества, так как позволяют выявить:

а) недостатки конструкции и технологии изготовления электрооборудования, приводящие к срыву выполнения заданных функций в условиях эксплуатации;

б) отклонения от выбранной конструкции или принятой технологии;

в) скрытые дефекты материалов или элементов конструкции, неподдающиеся обнаружению существующими методами технического контроля;

г) резервы повышения качества и надежности разрабатываемого конструктивно-технологического варианта изделия.

По результатам испытаний изделий в производстве разработчик

устанавливает причины снижения качества.

В данной работе мы рассматриваем основные понятия, общие методические указания по испытаниям электрооборудования, подробно останавливаемся на испытаниях электродвигателей переменного тока.

1 Испытания электрооборудования

1.1 Основные понятия

При изучении правил испытания электрооборудования следует знать значение следующих понятий.3

Предельно допустимое значение параметра — наибольшее или наименьшее значение параметра, которое может иметь работоспособное электрооборудование.

Исправное состояние — состояние электрооборудования, при котором оно соответствует всем требованиям конструкторской и нормативно-технической документации.

Ресурс — наработка электрооборудования от начала его эксплуатации или ее возобновления после ремонта до перехода в состояние, при котором дальнейшая эксплуатация недопустима или нецелесообразна.

Контроль технического состояния (контроль) — проверка соответствия значений параметров электрооборудования требованиям настоящих Норм.

Ремонт по техническому состоянию — ремонт, объем и время проведения которого определяются состоянием электрооборудования по результатам контроля, проводимого с периодичностью и в объеме, установленными настоящими Нормами.

--PAGE_BREAK--

Испытания — экспериментальное определение качественных и (или) количественных характеристик электрооборудования в результате воздействия на него факторами, регламентированными настоящими Нормами.

Комплексные испытания — испытания в объеме, определяемом специальной программой.

Измерения — нахождение значения физической величины опытным путем с помощью технических средств, имеющих нормированные метрологические свойства.

Погрешность измерения — допустимые пределы погрешности, определяемые стандартизованной или аттестованной методикой измерений.

Испытательное напряжение частоты 50 Гц — действующее значение напряжения переменного тока, которое должны выдерживать в течение заданного времени внутренняя и внешняя изоляция электрооборудования при определенных условиях испытания.

Испытательное выпрямленное напряжение — амплитудное значение выпрямленного напряжения, прикладываемого к электрооборудованию в течение заданного времени при определенных условиях испытания.

Аппараты — силовые выключатели, выключатели нагрузки, разъединители, отделители, короткозамыкатели, заземлители, предохранители, предохранители-разъединители, вентильные разрядники, ограничители перенапряжений, комплектные распределительные устройства, комплектные экранированные токопроводы, конденсаторы.

Условные обозначения категорий контроля:4

П — при вводе в эксплуатацию нового электрооборудования и электрооборудования, прошедшего восстановительный или капитальный ремонт и реконструкцию на специализированном ремонтном предприятии;

К — при капитальном ремонте на энергопредприятии;

С — при среднем ремонте;

Т — при текущем ремонте электрооборудования;

М — между ремонтами.

Категория «К» включает контроль при капитальном ремонте как данного вида электрооборудования, так и оборудования данного присоединения.

Испытания при средних ремонтах турбогенераторов с выводом ротора производятся в объеме и по нормам для капитального ремонта (К), а без вывода ротора — в объеме и по нормам для текущего ремонта (Т).

1.2 Общие методические указания по испытаниям

электрооборудования

Испытания электрооборудования должны производиться с соблюдением требований правил техники безопасности.

Измерение изоляционных характеристик электрооборудования под рабочим напряжением разрешается осуществлять при условии использования устройств, обеспечивающих безопасность работ и защиту нормально заземляемого низкопотенциального вывода контролируемого объекта от появления на нем опасного напряжения при нарушении связи с землей.

Электрические испытания изоляции электрооборудования и отбор пробы трансформаторного масла для испытаний необходимо проводить при температуре изоляции не ниже 5°С, кроме оговоренных в Нормах случаев, когда измерения следует проводить при более высокой температуре. В отдельных случаях (например, при приемо-сдаточных испытаниях) по решению технического руководителя энергопредприятия измерения тангенса угла диэлектрических потерь, сопротивления изоляции и другие измерения на электрооборудовании на напряжение до 35 кВ включительно могут проводиться при более низкой температуре. Измерения электрических характеристик изоляции, произведенные при отрицательных температурах, должны быть повторены в возможно более короткие сроки при температуре изоляции не ниже 5°С.

Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (расхождение — не более 5°С). Если это невозможно, должен применяться температурный перерасчет в соответствии с инструкциями по эксплуатации конкретных видов электрооборудования.

При измерении сопротивления изоляции отсчет показаний мегаомметра производится через 60 с после начала измерений. Если в соответствии с Нормами требуется определение коэффициента абсорбции (R60"/R15"), отсчет производится дважды: через 15 и 60 с после начала измерений.

Испытанию повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами.

Перед проведением испытаний изоляции электрооборудования (за исключением вращающихся машин, находящихся в эксплуатации) наружная поверхность изоляции должна быть очищена от пыли и грязи, кроме тех случаев, когда испытания проводятся методом, не требующим отключения электрооборудования.

Испытание изоляции обмоток вращающихся машин, трансформаторов и реакторов повышенным приложенным напряжением частоты 50 Гц должно производиться поочередно для каждой электрически независимой цепи или параллельной ветви (в последнем случае при наличии полной изоляции между ветвями). При этом вывод испытательного устройства, который будет находиться под напряжением, соединяется с выводом испытуемой обмотки, а другой — с заземленным корпусом испытуемого электрооборудования, с которым на все время испытаний данной обмотки электрически соединяются все другие обмотки.

Обмотки, соединенные между собой наглухо и не имеющие выведенных обоих концов каждой фазы или ветви, должны испытываться относительно корпуса без их разъединения.

При испытаниях электрооборудования повышенным напряжением частоты 50 Гц, а также при измерении тока и потерь холостого хода силовых и измерительных трансформаторов рекомендуется использовать линейное напряжение питающей сети.

Испытательное напряжение должно подниматься плавно со скоростью, допускающей визуальный контроль по измерительным приборам, и по достижении установленного значения поддерживаться неизменным в течение всего времени испытания. После требуемой выдержки напряжение плавно снижается до значения не более одной трети испытательного и отключается.

Под продолжительностью испытания подразумевается время приложения полного испытательного напряжения, установленного Нормами.

2 Нормы испытаний электрооборудования на примере

электродвигателей переменного тока

2.1Испытания электродвигателей переменного тока

Электродвигатели переменного тока5– электрические машины, преобразующие электрическую энергию в механическую, а также являются наиболее совершенным и распространенным видом привода машин и механизмов, преобразующих электрическую энергию в механическую.

Измерение сопротивления изоляции.6Производится мегаомметром, напряжение которого указано в табл. 2.1. Допустимые значения сопротивления изоляции и коэффициента абсорбции R60"/R15"указаны в табл. 2.1-2.3.

Оценка состояния изоляции обмоток электродвигателей при решении вопроса о необходимости сушки.7Электродвигатели переменного тока включаются без сушки, если значения сопротивления изоляции обмоток и коэффициента абсорбции не ниже указанных в табл. 2.1-2.3

Испытание повышенным напряжением промышленной частоты. Значение испытательного напряжения принимается согласно табл. 2.4. Продолжительность приложения испытательного напряжения 1 мин.

Измерение сопротивления постоянному току. Измерение производится при практически холодном состоянии машины.

Обмотки статора и ротора.8Сопротивление постоянному току обмотки ротора измеряется у синхронных электродвигателей и асинхронных электродвигателей с фазным ротором.Измерение производится у электродвигателей на напряжение 3 кВ и выше.Приведенные к одинаковой температуре измеренные значения сопротивлений различных фаз обмоток, а также обмотки возбуждения синхронных двигателей не должны отличаться друг от друга и от исходных данных больше чем на 2%.

Таблица 2.1 Допустимые значения сопротивления изоляции и коэффициента абсорбции

Испытуемый элемент

    продолжение
--PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK----PAGE_BREAK--


Fluke 1653

Тестовое напряжение: 50 — 100 — 250 — 500 — 1000 В

Точность установки тестового напряжения:1+ 10%, -0%

¹ при номинальном токе тестирования


Тестовое напряжение: 50 В

Тестовый ток: 1 мА при 50 КОм

Сопротивление изоляции: 10 КОм… 50 МОм

Разрешение: 0,01 МОм

Точность: ± (3% + 3 знака)


Тестовое напряжение: 100 В

Тестовый ток: 1 мА при 100 КОм

Сопротивление изоляции: 100 КОм… 20 МОм

Разрешение: 0,01 МОм

Точность: ± (3% + 3 знака)

Сопротивление изоляции: 20 МОм… 100 МОм

Разрешение: 0,1 МW

Точность: ± (3% + 3 знака)


Тестовое напряжение: 250 В

Тестовый ток: 1 мА при 250 КОм

Сопротивление изоляции: 100 КОм… 200 МОм

Разрешение: 0,1 МОм

Точность: ± (1,5% + 3 знака)


Тестовое напряжение: 500 В

Тестовый ток: 1 мА при 500 КОм

Сопротивление изоляции: 100 КОм… 200 МОм

Разрешение: 0,1 МОм

Точность: ± (1,5% + 3 знака)

Сопротивление изоляции: 200 МОм… 500 МОм

Разрешение: 1 МОм

Точность: 10%


Тестовое напряжение: 1000 В

Тестовый ток: 1 мА при 1 МОм

Сопротивление изоляции: 100 КОм… 200 МОм

Разрешение: 0,1 МОм

Точность: ± (1,5% + 3 знака)

Сопротивление изоляции: 200 МОм… 500 МОм

Разрешение: 1 МОм

Точность: 10%


Авторазрядка: Постоянное время разрядки, 0,5 секунды для C = 1 мкФ или менее.

Обнаружение контура под током: Запрещает тест, если напряжение на зажимах > 30 В до начала тестирования

Максимальная емкостная нагрузка: Работает с нагрузкой 5 мкФ

Измерение полного сопротивления контура

Диапазон: 100 — 500 В переменного тока (50/60 Гц)

Входные разъемы: Программная клавиатура

Полное сопротивление контура: Фаза — земля

Полное сопротивление линии: Фаза — нейтраль

Ограничение на последовательные тесты: Автоматическое отключение на 10 секунд для охлаждения после 50 последовательных тестов (как правило)


Диапазон: 20 Ом

Разрешение: 0,01 Ом

Точность: ± (3% +10 знаков)

Диапазон: 200 Ом

Разрешение: 0,1 Ом

Точность: ± (3% +10 знаков)

Диапазон: 2000 Ом

Разрешение: 1 Ом

Точность: ± (3% +10 знаков)

Измерение тока короткого замыкания фазы на землю (PFC)/фазы на нейтраль (PSC)

Вычисление: Ток, который может течь, если фазовый провод замкнет на провод защитного заземления/ нейтраль, равен сетевому напряжению, деленному на сопротивление контура заземления (L-PE)/ сопротивление линии (L-N).

Диапазон: 0 — 10 КА

Разрешение (Ik< 1000 А): 1 А

Разрешение (Ik>= 1000 А): 0,1 КА

Точность: Определяется точностью измерений сопротивления контура и сетевого напряжения.

Тестирование УЗО

Fluke 1651 ²AC, G, S

Fluke 1652 ²AC, G, S, A

Fluke 1653 ²AC, G, S, A

Измерение времени срабатывания (ΔT) — Fluke 1651

Значения тестового тока: 10, 30, 100, 300, 500, 1000 мА

Коэффициент: x 1

Точность установки тока: +10% — 0%

Макс. время тестирования (Тип УЗО 2G): 310 мс

Макс. время тестирования (Тип УЗО 2S): 510 мс

Измерение времени срабатывания (ΔT) — Fluke 1652, Fluke 1653

Точность измерения времени размыкания ±(1% показание + 1 знак)

Коэффициент: x ½

Значения тестового тока: 10, 30, 100, 300, 500, 1000 мА

Точность установки тока: +0% — 10%

Тип УЗО: ²G

Диапазон измерения (ЕС): 310 мс

Тип УЗО: ²S

Диапазон измерения (ЕС): 510 мс

Коэффициент:x 1

Значения тестового тока: 10, 30, 100, 300, 500, 1000 мА

Точность установки тока: +10% — 0%

Тип УЗО: ²G

Диапазон измерения (ЕС): 310 мс

Тип УЗО: ²S

Диапазон измерения (ЕС): 510 мс

Коэффициент: x 5

Значения тестового тока: 10, 30 мА

Точность установки тока: ±10%

Тип УЗО: ²G

Диапазон измерения (ЕС): 50 мс

Тип УЗО: ²S

Диапазон измерения (ЕС): 160 мс

Тест тока срабатывания (линейно-нарастающим воздействием) — Fluke 1652, Fluke 1653

Диапазон изменения тока: 50% — 110% номинального тока УЗО

Размер шага: 10% IΔN

Время задержки при замыкании контактов (Тип 2G): 300 мс / шаг

Время задержки при замыкании контактов (Тип 2S): 500 мс / шаг

Точность измерения тока размыкания: ±5%

Измерение сопротивления заземления (RE) — Fluke 1653

Диапазон: 200 Ом

Разрешение: 0,1 Ом

Точность: ± (2% +5 знаков)

Диапазон: 2000 Ом

Разрешение: 1 Ом

Точность: ± (3,5% +10 знаков)

Частота: 128 Гц

Требуемое напряжение: +25 В

Индикация чередования фаз — Fluke 1653

Значок: Значок «Индикатор чередования фаз» активен

Отображение чередования фаз:

Отображение «1-2-3» в цифровом поле дисплея при правильном чередовании.

Отображение «3-2-1» при неверном чередовании фаз.

Прочерки вместо номера указывают на невозможность выполнения правильного определения.

² Типы УЗО

G Общий, без задержки

S Задержка по времени

A Отклик на импульсный сигнал

Переменный ток Отклик на переменный ток

    продолжение
--PAGE_BREAK--

/>

Рис. 4 Fluke 1653 Тестер параметров электроустановок

Заключение

В ходе работы нами были рассмотрены основные положения испытаний электрооборудования. На примереэлектродвигателей переменного тока нами был подробно рассмотрен порядок, условия и нормы проведения испытаний электрооборудования.

Следует отметить, что повышение эффективности контроля процесса проектирования и технологического процесса изготовления изделий приводит к снижению роли испытаний готовой продукции.

Хорошо организованный автоматизированный контроль технологического процесса производства позволяет сократить объем испытаний готовых изделий. Учитывая необходимость оптимизации стоимости изделия, следует находить разумный компромисс между объемом испытаний и эффективностью контроля изготовления изделий.

Список использованной литературы

ГОСТ 20 911-89. Техническая диагностика. – М.: Госиздат, 1990.

Ерошенко Г.П., Пястолов А.А. Курсовое и дипломное проектирование по эксплуатации электрооборудования, М.: Агропромиздат, 1988

Закон «Об энергосбережении» // «Энергоэффективность», №7-с.2-5.

Методические рекомендации по составлению технико-экономических обоснований для энергосберегающих мероприятий» — Минск: БелТЭИ, 2003

Москаленко В.В. Электрический привод. – М.: Высшая школа, 1991 – 430с.

Объём и нормы испытаний электрооборудования РД34.45-51.300-97.

Республиканская программа энергосбережения на 2006-2010гг.- Минск: 2005.

Русан В.И., Короткевич М.А.: Комплексное использование возобновляемых источников энергии. – Мн.: ИЭАПК НАН Б, 2004.

Сборник нормативно-технических материалов по энергосбережению» — Минск. ООФ «Экомир».2005

Саплин Л.А. и др. Энергоснабжение сельскохозяйственных потребителей с использованием ВИЭ, 2000

Таран В.П. Диагностирование электрооборудования. – К.: Техника, 1983с.

Теоретические основы электротехники: в 3 т./К.С.Демирчан [и др.].–СПб: Питер, 2004.

Фоменков А.Н. Электропривод с.х. машин, агрегатов и поточных линий. – М.: Колос, 1984 — 228 с.

Фираго Б.И., Павлячик Л.Б. Теория электропривода. – Мн.: ЗАО Техноперспектива, 2004 – 527 с.

«Энергоэффективность»,- Мн. ПРУП «Белэнергосбережение»,- Мн. Пясталов А.А., Ерошенко Г.П. Эксплуатация электрооборудования. М.: Агропромиздат, 1990, 360с

Электротехнология / В.А. Карасенко [и др.]. — М.: Колос, 1992. — 304 с.

Электротермическое оборудование сельскохозяйственного производства / Л.С. Герасимович [и др.].; под ред. Л.С. Герасимовича. — Мн.: Ураджай, 1995. -415 с.

referat.kulichki.net/files/page.php?id=40359

infoholod.ru/stat/3_stat.html

megommetr.ru/stati/megaommetr-megommetr-chto-eto-takoe.html

megommetr.ru/katalog/2862.html

megommetr.ru/katalog/2892.html


еще рефераты
Еще работы по физике