Реферат: Методы исследования в цитологии

Мурманскийгосударственный технический университет

                                                                                                                                          Кафедра биологии

Доклад на тему:

«Методыисследования в цитологии»

Выполнил:

Студентка 1-го курса

Технического факультета

Кафедры Биология

Серебрякова ЛадаВячеславовна

Проверил:


Мурманск2001       


План:

1.Что изучает цитология.

2.Представление о том, что организмы состоят из клеток.

3.Методы исследования, применяемые в цитологии.

4.Фракционирование клеток.

5.Радиоавтография.

6.Определение продолжительности некоторых стадий клеточного цикла методомрадиоавтографии.

Цитология –наука о клетке. Из среды других биологических наук она выделилась почти 100 летназад. Впервые обобщенные сведения о строении клеток были собраны в книгуЖ.-Б.   Карнуа  «Биология клетки», вышедшей в 1884 году. Современная цитологияизучает строение клеток, их функционирование как элементарных живых систем:исследуются функции отдельных клеточных компонентов, процессы воспроизведенияклеток, их репарации, приспособление к условиям среды и многие другие процессы,позволяющие судить об общих для всех клеток свойствах и функциях. Цитологиярассматривает также особенности строения специализированных клеток. Другимисловами, современная цитология – это физиология клетки. Цитология тесносопряжена с научными и методическими достижениями биохимии, биофизики,молекулярной биологии и генетики. Это послужило основанием для углубленногоизучения клетки уже с позиций этих наук и появления некой синтетической науки оклетке – биологии клетки, или клеточной биологии. В настоящее время терминыцитология и биология клетки совпадают, так как их предметом изучения является клеткас ее собственными закономерностями организации и функционирования. Дисциплина«Биология клетки» относится к фундаментальным разделам биологии, потому что онаисследует и описывает единственную единицу всего живого на Земле – клетку.

          Длительное и пристальноеизучение клетки как таковой привело к формулированию важного теоретическогообобщения, имеющего общебиологическое значение, а именно к появлению клеточнойтеории. В XVII в. Роберт Гук,физик и биолог, отличавшийся большой изобретательностью, создал микроскоп.Рассматривая под  своим микроскопом тонкий срез пробки, Гук обнаружил, что онапостроена из малюсеньких ничем не заполненных ячеек, разделенных тонкимистенками, которые, как это нам теперь известно, состоят из целлюлозы. Он назвалэти маленькие ячейки клетками. В дальнейшем, когда другие биологи началиисследовать под микроскопом растительные ткани, оказалось, что маленькиеячейки, обнаруженные Гуком в мертвой иссохшей пробке, имеются и в живыхрастительных тканях, но у них они не пустые, а содержат каждая по маленькомустуденистому тельцу. После того, как микроскопическому исследованию подверглиживотные ткани, было установлено, что они также состоят из мелких студенистыхтелец, но  что эти тельца лишь в редких случаях отделены друг от друга стенками.В результате всех этих исследований в 1939 г. Шлейден и Шванн независимо другот друга сформулировали клеточную теорию, гласящую, что клетки представляютсобой элементарные единицы, из которых в конечном счете построены все растенияи все животные. В течение какого-то времени двоякий смысл слова клетка ещевызывал некоторые недоразумения, но затем он прочно закрепился за этимималенькими желеобразными тельцами.

          Современное представление оклетке тесно связано с техническими достижениями и усовершенствованиями методовисследования. Помимо обычной световой микроскопии, не утратившей своей роли, впоследние несколько десятилетий большое значение приобрели поляризационная,ультрафиолетовая, флюоресцентная, фазовоконтрастная микроскопия. Среди них особоеместо занимает электронная микроскопия, разрешающая способность которойпозволила проникнуть и изучить субмикроскопическую и молекулярную структуруклетки. Современные методы исследования позволили вскрыть детальную картинуклеточной организации.

          Каждая клеткасостоит из ядра и цитоплазмы, отделенных друг от друга и от внешней средыоболочками. Компонентами цитоплазмы являются: оболочка, гиалоплазма,эндоплазматическая сеть и рибосомы, аппарат Гольджи, лизосомы, митохондрии,включения, клеточный центр, специализированные органеллы.

          Часть организма, выполняющаякакую-то особую функцию, называют органом. Любой орган – легкое, печень, почка,например – имеет каждый свою особую структуру, благодаря которой он играетопределенную роль в организме. Точно так же в цитоплазме имеются особыеструктуры, своеобразное строение которых дает им возможность нести определенныефункции, необходимые для метаболизма клетки; эти структуры называют органеллами(«маленькими органами»).

          Выяснениеприроды, функции и распределения органелл цитоплазмы стало возможным лишь послеразвития методов современной биологии клетки. Наиболее полезными в этом отношении оказались: 1) электронная микроскопия; 2) фракционирование клеток, спомощью которого биохимики могут выделять относительно чистые фракции клеток,содержащие определенные органеллы, и изучать, таким образом, отдельныеинтересующие их метаболические реакции; 3) радиоавтография, сделавшая возможнымнепосредственное изучение отдельных метаболических реакций, протекающих в органеллах.

          Метод, с помощьюкоторого органеллы выделяют из клеток, называют фракционированием.  Этот методоказался очень плодотворным, дав биохимикам возможность выделять разныеорганеллы  клетки в относительно чистом виде. Он позволяет, кроме того,определять химический состав органелл и содержащиеся в них ферменты и наосновании получаемых данных делать выводы об их функциях в клетке. В качествепервого шага клетки разрушают путем гомогенизации в какой-нибудь подходящейсреде, которая обеспечивает сохранность органелл и предотвращает  их агрегацию.Очень часто для этого используют раствор сахарозы. Хотя митохондрии и многиедругие клеточные органеллы остаются при этом неповрежденными, такие мембранныепереплетения, как эндоплазматический ретикулум, а также плазматическаямембрана, распадаются на фрагменты. Однако образующиеся фрагменты мембраннередко замыкаются сами на себя, в результате чего получаются округлые пузырькиразличных размеров.

          На следующемэтапе клеточный гомогенат подвергают ряду центрифугирований, скорость ипродолжительность которых всякий раз возрастает; этот процесс называетсядифференциальным центрифугированием. Разные органеллы клетки осаждаются на днецентрифужных пробирок при различных скоростях центрифугирования, что зависит отразмеров, плотности и формы органелл. Образующийся осадок можно отобрать иисследовать. Быстрее всех осаждаются такие крупные и плотные структуры, какядра, а для осаждения более мелких и менее плотных структур, таких, какпузырьки эндоплазматического ретикулума, требуются более высокие скорости иболее длительное время. Поэтому при низких скоростях центрифугирования ядраосаждаются, а другие клеточные органеллы остаются в суспензии. При болеевысоких скоростях осаждаются митохондрии и лизосомы, а при длительном центрифугированиии очень высоких скоростях в осадок выпадают даже такие мелкие частицы, какрибосомы. Осадки можно исследовать с помощью электронного микроскопа, чтобыопределить чистоту полученных фракций. Все фракции до некоторой степенизагрязнены другими органеллами. Если тем не менее удается добиться достаточнойчистоты фракций, то их подвергают затем биохимическому анализу, чтобыопределить химический состав и ферментативную активность выделенных органелл.

          Сравнительнонедавно был создан другой метод фракционирования клеток – центрифугирование вградиенте плотности; при этом центрифугирование  производят в пробирке, вкоторой предварительно наслаивают друг на друга растворы сахарозы всевозрастающей концентрации, а следовательно, и возрастающей плотности. Прицентрифугировании содержащиеся в гомогенате органеллы располагаются вцентрифужной пробирке на тех уровнях, на которых находятся растворы сахарозы,соответствующие им по плотности. Этот метод дает биохимикам  возможностьразделять органеллы одинаковых размеров, но разной плотности (рис. 1.).

/>

                Радиоавтография– сравнительно новый метод, безмерно расширивший возможности как световой, таки электронной микроскопии. Это в высшей степени современный метод, обязанныйсвоим возникновением развитию ядерной физики, которое сделало возможнымполучение радиоактивных изотопов различных элементов. Для радиоавтографиинеобходимы, в частности, изотопы тех элементов, которые используются клеткойили могут связываться с веществами, используемыми клеткой, и которые можновводить животным или добавлять к культурам в количествах, не нарушающихнормального клеточного метаболизма. Поскольку радиоактивный изотоп (илипомеченное им вещество) участвует в биохимических реакциях так же, как егонерадиоактивный аналог, и в то же время испускает излучение, путь изотопов ворганизме можно проследить с помощью различных методов обнаружениярадиоактивности. Один из способов обнаружения радиоактивности основан на ееспособности действовать на фотопленку подобно свету; но радиоактивное излучениепроникает сквозь черную бумагу, используемую для того, чтобы защититьфотопленку от света, и оказывает на пленку такое же действие, как свет.

          Чтобы на препаратах,предназначенных для изучения с помощью светового или электронного микроскопов,можно было обнаружить излучение, испускаемое радиоактивными изотопами,препараты покрывают в темном помещении особой фотоэмульсией, после чегооставляют на некоторое время в темноте. Затем препараты проявляют (тоже втемноте) и фиксируют. Участки препарата, содержащие радиоактивные изотопы,воздействуют на лежащую над ними эмульсию, в которой под действием испускаемогоизлучения возникают темные «зерна». Таким образом, получают радиоавтографы (отгреч. радио – лучевидный, аутос – сам и графо – писать).

          Вначале гистологи располагалилишь несколькими радиоактивными изотопами; так, например, во многих раннихисследованиях с применением радиоавтографии использовался радиоактивный фосфор.Позднее стали использовать значительно больше таких изотопов; особенно широкоеприменение нашел радиоактивный изотоп водорода – тритий.

          Радиоавтографияимела и имеет до сих пор очень широкое применение для изучения того, где и какв организме протекают те или иные биохимические реакции.

          Химическиесоединения,  меченые радиоактивными изотопами, которые используются дляисследования биологических процессов, называют предшественниками.Предшественники – это обычно вещества, подобные тем, которые организм получаетиз пищи; они служат строительными блоками для построения тканей и включаются всложные компоненты клеток и тканей таким же образом, как в них включаютсянемеченые строительные блоки. Компонент ткани, в который включается меченыйпредшественник и который испускает излучение, называется продуктом.

          Клетки,выращиваемые в культуре, хотя и принадлежат к одному и тому же типу, в любойданный момент времени будут находиться на разных стадиях клеточного цикла, еслине принять специальных  мер для синхронизации их циклов. Тем не менее, путемвведения в клетки  тритий-тимидина и последующего изготовления радиоавтографовможно определить продолжительность различных стадий цикла. Время наступленияодной стадии – митоза – можно определить и без меченого тимидина. Для этоговыборку клеток из культуры держат под наблюдением в фазово-контрастноммикроскопе, который дает возможность непосредственно следить за течением митозаи устанавливать его сроки. Продолжительность митоза обычно равна 1 ч, хотя вклетках некоторых типов он занимает до 1.5 ч.

          Определениепродолжительности G2-периода.

          Для определенияпродолжительности  G 2–периода применяют метод, известный под названием импульснойметки:  к культуре клеток добавляют меченый тимидин, а спустя короткоевремя заменяют культуральную среду свежей, с тем, чтобы предотвратитьдальнейшее поглощение клетками меченого тимидина. При этом метку включаюттолько в те клетки, которые в течение кратковременного пребывания в среде с тритий-тимидином находились в S-периоде клеточного цикла. Доля такихклеток невелика и лишь небольшая часть клеток получит метку. Кроме того, всеклетки, включающие метку, будут находиться в интерфазе – от клеток, едвавступивших в S-период, дотаких, которые почти закончили его за время воздействия тритий-тимидина. Впробе, взятой сразу после удаления меченого тимидина, метка содержится только винтерфазных ядрах, принадлежащих клеткам, которые в период воздействия меткинаходились в S-периоде; те жеклетки, которые в этот период находились в состоянии митоза, остаютсянемечеными.

          Если затем продолжать отбиратьиз культуры пробы через определенные промежутки времени и изготовлять длякаждой последовательной пробы радиоавтограф, то наступит момент, когда метканачнет появляться в митотических d-хромосомах. Метки  будутвключаться во все те клетки, которые в период наличия в  среде тритий-тимидинанаходились в S-периоде, причемсреди этих клеток будут как только что вступившие в S-период, так ипочти закончившие его. Совершенно очевидно, что эти последние первыми средимеченых клеток проделают митоз и, следовательно, в их митотических хромосомахобнаружится метка. Тем самым промежуток между 1) временем, когда из культурыбыл удален меченый тимидин, и 2)  временем  появления меченых митотическиххромосом будет соответствовать продолжительности G 2–периодаклеточного цикла.

          Определениепродолжительности S-периода.

          Поскольку клетки, находящиесяв момент введения в среду метки в самом конце S-периода,первыми вступят в митоз, то, следовательно, в тех клетках, у которых S-периодначинается непосредственно перед удалением метки, меченые митотическиехромосомы появятся в последнюю очередь. Поэтому, если бы нам удалось определитьпромежуток между временем вступления в митоз клеток, помеченных первыми, иклеток, помеченных последними, мы установили бы продолжительность S-периода. Однако,хотя время, когда впервые появляются меченые митотические хромосомы, установитьлегко, время вступления в митоз клеток, помеченных последними, определитьневозможно (этому препятствует очень большое количество меченых делящихсяклеток в последних пробах). Поэтому продолжительность S-периодаприходится определять другим способом.

          При исследованиирадиоавтографов последовательных проб клеток, отбираемых через одинаковыепромежутки времени, обнаруживается, что доля клеток, несущих метку в своихмитотических хромосомах, постепенно возрастает, пока  мечеными не окажутсябуквально все делящиеся клетки. Однако, по мере того как клетки одна за другойзавершают митоз, они превращаются в меченые интерфазные клетки. Первымизавершают митоз те из меченых клеток, которые вступили в него первыми; исоответственно из клеток с мечеными митотическими хромосомами последнимизавершают митоз те, которые вступили в него позже всех. Посколькупродолжительность митоза всегда одинакова, то, следовательно, если бы мы моглиопределить промежуток между: 1) временем окончания митоза в клетках, включившихметку первыми, и 2) временем окончания митоза в клетках, включивших меткупоследними, мы установили бы продолжительность S-периода.Продолжительность S-периода нетрудно установить, определив промежутокмежду: 1) моментом времени, когда 50% митотических клеток в культуре несутметку, и 2) моментом времени, после которого культура уже не содержит 50%меченых клеток.

          Определениевремени генерации (общей продолжительности всего клеточного цикла).

          Продолжая отбирать из культурыпробы клеток, можно обнаружить, что меченые фигуры митоза в какой-то моментсовершенно исчезают, а затем появляются вновь. Такие делящиеся клеткипредставляют собой дочерние клетки, происходящие от тех материнских клеток,которые включили метку, находясь в момент воздействия тритий-тимидина в S-периоде. Этиматеринские клетки перешли в S-период, разделились, а затем прошличерез вторую интерфазу и второе деление, то есть проделали один полный цикл ичасть следующего. Время, необходимое для прохождения полного клеточного цикла,называется временем генерации. Оно соответствует промежутку между двумяпоследовательными пиками включения метки и обычно соответствует отрезку междутеми точками последовательных восходящих кривых, в которых 50% фигур митозасодержат метку. 


Литература.

А.Хэм,Д.Кормак «Гистология», том 1 Москва «МИР» 1982;

М.Г.Абрамов«Клиническая цитология» Москва «МЕДИЦИНА» 1974;

Ю.С.Ченцов«Общая цитология»

еще рефераты
Еще работы по биологии