Реферат: Физиологическое значение меди в жизнедеятельности растений

 

Ц

елью написания данной курсовой работы является стремление выяснить роль меди в жизнедеятельности растительного организма, в каких процессах она принимает участие, как проявляется недостаток этого жизненно необходимого элемента, какие культуры особенно нуждаются в поступлении меди извне, а также способы удобрения почв медными удобрениями.

 

 

1.<span style=«font: 7pt „Times New Roman“;»>             

Введение ……………………………………….      3

2.<span style=«font: 7pt „Times New Roman“;»>           

Медь и ферменты растительной

клетки …………………………………………..      5

3.<span style=«font: 7pt „Times New Roman“;»>           

Медь и фотосинтез ………………………..     9

4.<span style=«font: 7pt „Times New Roman“;»>           

Медь и другие процессы в

растительном организме ………………      13

5.<span style=«font: 7pt „Times New Roman“;»>            

Потребность отдельных культур

в меди …………………………………………..       20

6.<span style=«font: 7pt „Times New Roman“;»>           

Симптомы и последствия недостатка

меди в растениях………………………….21

7.<span style=«font: 7pt „Times New Roman“;»>            

Заключение …………………………………23

8.            Список использованной

литературы ………………………………….24


 

 

Всеобщее распространение меди в растительном и животном мире было установлено еще в 1816 г. (Buchholtz, 1816). Раскрытие роли меди в биохимии живой клетки началось после того, как выяснилось, что медь входит в состав гемоцианина — пигмента крови головоногих моллюсков, выполняющего функцию переносчика кислорода. После этого открытия понадобилось более 50 лет, чтобы установить, что для растений медь является необходимым элементом (Sommer, 1931). Когда же была доказана необходимость меди для большого количества растений (рис. 1, 2 и 2а), то медь нашла практическое применение в растениеводстве, особенно на бедных в отношении ее доступных форм торфянистоболотных почвах (рис. 3) (Лашкевич, 1937, и др.).

 

 

Рис 1.

Изменения у листьев томатов, вызванные медной недостаточностью.

(По: Stiles, 1961)

Внизулист нормального растения,

наверхулистья томатов, не получивших медь.

Однако прошло еще немало времени, пока были получены важные све­дения о физиологической роли меди. Стайлс (1949), автор книги «Микро­элементы в питании растений и животных», писал, что при обсуждении роли меди в жизни растений приходится основываться только на одном достоверном факте ее вхождения в состав полифенолоксидазы. И хотя это пессимистическое высказывание не совсем соответствовало действи­тельности, так как уже тогда было известно, что медь входит в состав идругих окислительных ферментов — лакказы и аскорбинатоксидазы, оно в значительной степени верно отражало бедность наших знаний того времени о физиологической роли этого элемента. Наши сведения в этом отношении и сейчас весьма ограничены, хотя за прошедший с того времени сравнительно небольшой срок они и обогатились новыми открытиями ипредставлениями, имеющими первостепенное значение.

Содержание меди в растениях варьирует от 1 до 20 мг/кг сухого ве­щества; наиболее высоким содержанием меди отличаются листья. Чаще всего нахождение меди в организме связано с митохондриями. На животном материале показано, что медь является составной частью всех выделенных митохондриальных фракций (Балевска, 1972). Она найдена в белках межмембранного пространства, в матриксе, в структурных белках и в белках, растворимых в детергентах. Все это указывает на важ­ную роль меди в процессах, протекающих в митохондриях. Наиболее активное участие в обмене меди принимают медьсодержащие белки раст­воримой митохондриальной фракции. Безусловно, что роль меди в митохондриях не ограничивается только ее участием в ферментах, так как суммарное количество меди в митохондриях значительно выше, чем это необходимо для моноаминоксидазы, цитохромоксидазы, аскорбинато­ксидазы, уратоксидазы и других входящих в них ферментов. На животном материале получены сведения, что медь локализуется в цитоплазматических гранулах, похожих на лизосомы.

Участие меди в метаболических процессах определяется ее специфи­ческими физико-химическими свойствами. Во-первых, ионы меди реаги­руют, как уже указывалось, с аминокислотами, белками и другими биополимерами, образуя стабильные комплексы в большейстепени,чем остальные металлы. Во-вторых, ионы меди имеют каталитические свойства, которые усиливаются при связывании иона с белковой молекулой. И, в-третьих, ион меди легко освобождает или принимает один электрон, что обусловливает поведение меди то как донора, то как акцептора элект­ронов (Frieden, 1968). Большие успехи по изучению физиологической роли меди достигнуты в физиологии животных. Были приведены доказательства в пользу того, что медь, главным образом, связана с белками и не бывает в клетке в низко­молекулярной форме. Как показал Милс (Mills, 1956), в растительной ткани около 2/3 меди могут находиться внерастворимом, связан­ном состоянии.

 

 

Мы уже сообщали об обнаружении медьсодержащих белков животного происхождения, многие из которых не обладают фермен­тативной функцией. Среди расте­ний, кроме пластоцианина и стеллоцианина, других таких белков не найдено. Хотя это скорее всего объясняется плохой изученностью вопроса, однако, по-видимому, в животном организме медьсодержа­щих белков значительно больше. Физиологическая роль меди в значительной степени определяется ее вхождением в состав ряда медь­содержащих белков и ферментов (табл.1), главным образом окислительно- восстановительных. К медьсодержащим ферментам от­носятся ферменты, катализирующие окисление дифенолов и гидроксилирование монофенолов, а именно — ортодифенолоксидаза (полифенолоксидаза, тирозиназа) и дофамингидрооксидаза. На этих ферментах мы не останавливаемся, так как сведения о фенолазах рас­тений приведены в ряде обзоров (Пейве, 1970; Рубин, Логинова, 1968; Соболева, Бокучава, 1969).

Цитохромоксидаза — наиболее изученный медьсодержащий фермент. Наличие меди в цитохромоксидазе было открыто Кейлином и Хартри (Keilin, Hartry, 1938). Аналитические исследования показали присут­ствие меди во всех препаратах очищенного фермента в количестве 1 атом меди на 1 моль гема. Важная роль цитохромоксидазы и ее свойства об­суждались во многих работах (Beinert, Palmer, 1964, и др.). Предпола­гается, что в цитохромоксидазе медь и гем присоединены к разным бел­кам, хотя связь между медью и гемом в нативном ферменте не может быть исключена. Высказано мнение, что медь и железо цитохромоксидазы входят в состав одного активного центра (Williamsetal., 1968).

Цитохромоксидазе уделяется огромное внимание в связи с ее большой ролью в дыхательном процессе и в фотосинтезе. Грин и его сотрудники (Green, Basfprd, Mackler, 1956) обнаружили высокое содержание цито­хромоксидазы в митохондриях сердца быка и привели доказательства концентрирования меди в фрагментах дыхательной цепи. По современным представлениям, «единица» цитохромоксидазы состоит из цитохромов а и а3, каждый из которых связан с одним атомом меди. Имеются сведения, что атом меди занимает положение промежуточного переносчика элект­ронов между цитохромами а и а3 (Beinert, Palmer, 1964).

 

Рис. 1

Устранение «болезни обработки» на болотных почвах у пшеницы яровой

путем внесения меди. (По: Лазарев, 1939).

1 – без NPK и без меди; 2 – с NPK, но без меди;

3 и 4 — NPK + медь.

 

В последние годы, достигнуты большие успехи в изучении аминоксидаз, широко представленных в тканях растений, животных и микро­организмов. Аминоксидазы осуществляют окислительное дезаминирование моно- и диаминов. Найдены два фермента этой группы — моно- и диаминоксидаза. Но предпо­лагается, что существует даже несколько типов митохондриальных моноаминоксидаз, как это было показано на препаратах митохондрий пе­чени крыс. По Пири (Pirie, 1962), аминоксидаза из рас­тений является медьсодержащим ферментом. Медь в моноаминоксидазе существует в двух- и одновалентном состоянии. Моноаминоксидаза локализуется во внешних митохондромальных мембра­нах.

К новым медьсодержа­щим ферментам, участвую­щим в окислении кислородом воздуха самых разнообраз­ных субстратов, относится также галактозоксидаза, вы­деленная из Polyporuscircinatus. Установлено, что медьсодержащим ферментом является триптофанпироллаза, выделенная из Pseudomonas. В состав этого фермента, на­ряду с медью, входит диссоциирующий гематиновый кофермент. Пред­полагают, что в ферменте кислород присоединяется к меди, а триптофан к гематиновому компоненту (Maeno, Feigelson, 1965).

Наряду с медьгематиновыми ферментами, к которым относятся цитохромоксидаза и триптофанпироллаза, известны также медьпиридоксалевые ферменты. Так, медь, наряду с пиридоксальфосфатом, найдена в составе бензиламиноксидазы. В отличие от меди полифенолоксидазы, лакказы, аскорбинатоксидазы, церуллоплазмина, медь в составе бензиламиноксидазы не меняет своей валентности в ходе каталитического процесса.

Следует также упомянуть в качестве медьсодержащих ферментов ксантиноксидазу, катализирующую окисление ксантина, уратоксидазу, катализирующую окисление пуринового кольца. Руссос и Морроу (Roussos, Morrow, 1966) выделили из клеток стенки кишечника крупного ро­гатого скота фермент, в составе которого они обнаружили железо, медь и ФАД в отношении 17:4:1. Этот фермент также оказался ксантиноксидазой, которая в отличие от ферментов такого типа не содержит молибдена.

Установлена полифункциональная роль меди в составе ряда оксидаз. Так, в составе лакказы Polyporusversicolorобнаружено наличие четырех атомов меди трех различных типов: одного атома меди типа I, одного атома меди типа IIдвух диамагнитных атомов меди. Такая структура обеспечивает кооперацию одноэлектронного переноса в окислении суб­страта с четырехэлектронным переносом при восстановлении кислорода.

К.И.Замараев (1967) провел анализ спектров электроннопарамаг­нитного резонанса медьсодержащих белков и ферментов: лакказы, церулоплазмина, цитохромоксидазы, бензиламнноксидазы, диаминокисдазы, Сu2+-карбоксипептидазы и Сu2+-карбоангидразы, эритрокупреина, медьсодержащего белка, входящего в состав ферментной системы Nitrosomonaseuropea, окисляющей гидрокисламин. Полученные спектры свидетельствуют о том, что во всех случаях Сu2+находится в составе комплекса с функциональными группами белка. Медь и железо являются активатором нитритредуктаз и редуктаз окиси азота (Nicholas, 1961).

Кроме выше названных медьсодержащих ферментов, в которых медь прочно связана с белком, имеется еще ряд медьферментных комплексов, в которых медь непрочно связана с белком и может быть заменена дру­гими металлами. К ним относится иодиназа тирозина, способствующая образованию дииодтирозина и сульфидоксидаза, окисляющая серово­дород до тиосульфата.

Недостаток меди ведет к снижению активности медьсодержащих ферментов. В ряде работ (Оканенко, Островская, 1950; Островская, 1961; Ковальский, Масляная, 1964, и др.) было показано, что условия питания медью всегда сказываются на активности медьсодержащих ферментов — полифенолоксидазы и аскорбинатоксидазы. Снижение активности медьсодержащих ферментов при недостатке меди сопровождается повышением активности железопротеидных ферментов (Kohan, 1955).

Приведем один интересный факт. Известно, что полифенолоксидаза участвует в окислении полифенолов и дубильных веществ, происходящем при скручивании и завяливании чая в процессе его ферментации. Недавно работами цейлонских исследователей было сделано открытие, имеющее важное практическое значение, но не используемое пока в нашем чайном производстве, а именно: ферментация черного чая не происходит, если листья содержат меди меньше 15 мг/кг. В этом случае активность полифенолоксидазы, ответственной за процесс ферментации, слишком пони­жена. Вместе с тем, чайные растения, содержащие менее 10 мг меди на 1 кг листьев, хорошо растут. Последнее обстоятельство свидетельствует о том, что низкая активность полифенолоксидазы не сказывается на жизнедеятельности растения.

По современным представлениям, полифенолоксидаза и пероксидаза в сочетании с фенольными субстратами участвуют на промежуточных этапах переноса водорода, тогда как цитохромоксидаза действует на концевом участке дыхательной цепи.

Таблица 1 

Медьсодержащие ферменты

 

Хотя факт вхождения меди в состав цитохромоксидазы открыт на животных объектах, нет никакого сомнения в том, что то же самое относится к участию меди в функции растительных митохондрий. М.С.Гамаюновой и Л.К.Островской (1964) обнаружено повышение активности цитохромоксидазы под влиянием солей меди. 

Благодаря способности некоторых микроэлементов — железа, мар­ганца, меди и молибдена менять свою валентность они занимают цент­ральное положение в регулировании окислительно-восстановительных реакций биохимических процессов не только дыхания, но и таких фунда­ментальных, как фотосинтез и усвоение молекулярного азота. Значение железа и марганца для процессов фотосинтеза хорошо известно. Недавно это было доказано и для меди. Еще раньше был получен ряд данных, которые давали косвенное указание на возможное участие меди в процессе фотосинтеза. К ним относились имевшиеся факты о скоплении меди в хлоропластах (в них сконцентрировано 70% всей меди, находящейся в листе), а также факты необходимости меди для синтеза железопорфириновых комплексов. Г.И.Сорокина (1967) указывает на возможность уча­стия меди в биосинтезе хлорофилла на уровне превращения протохлорофилла. Возможно, не случайно для образования в организме гемоглобина и хлорофилла — веществ, очень близких по своему, составу и своему большому значению в живой природе, — требуются и железо и медь.

 

Имеются данные о положительном влиянии ряда микроэлементов, особенно меди, на процесс зеленения, на уменьшение разрушения хлоро­филла в темноте и при старении листьев и на увеличение прочности хлорофиллбелкового комплекса (Заблуда, 1938; Окунцов, 1946; Макарова, Соловьева, 1959; Абуталыбов, 1961; Суйковский, 1963 и др.).

Б.А.Рубин и И.А.Чернавина (1959) обнаружили угнетающее дейст­вие на образование зеленых пигментов ингибиторов окислительных ферментных систем, а именно медь и железопротеидов. И.Д.Чернавина и Е.Р.Карташова (1967) высказали предположение, что восстановление под действием меди синтеза хлорофилла в тканях, утративших эту спо­собность, происходит главным образом за счет активирования дыхатель­ных цепей с участием медьсодержащих оксидаз. Рубин и Чернавина (1970) показали, что железо и активируемые им ферментные системы служат энергетической и материальной основой биосинтеза хлорофилла. При подавлении биосинтеза зеленых пигментов, вызванного недостатком же­леза, роль основного металла — активатора каталитических систем выполняет медь (медьпротеиды и сопряженные с ними энзиматические системы), но дыхание в этих условиях малоэффективно. Энергия запа­сается в ходе субстратного фосфорилирования при окислении фосфотриоз, пирувата и α-кетоглютарата. В этих условиях большое значение в энергетическом обмене приоб-ретают ацетилфосфат и неорганические полифосфаты. Способность аккумулировать энергию света сохраняется при этом за счет фосфорилирования циклического типа, при котором транспорт электронов возможен через пластоцианин в обход цитохрома f. 

В опытах Я.В.Пейве, Г.Я.Жизневской и Г.Я.Крауя-Берзинь (1961) внесение меди в почву несколько повышало содержа- ние каротиноидов.

Появился ряд интересных работ, в которых были приведены прямые доказатель- ства значения меди в реакциях фотосинтеза (Аrnоn, 1950; Trebst, Eck, 1963; Bichop, 1964, 1966, и др.). Арнон,Требст и Эк обнаружили чувствительность к медьхелатирующим агентам и фотосинтеза, и реакции Хилла. Спенсер и Поссингэм (Spencer, Possingham, 1960) обнаружили ослабленную реакцию Хилла хлоропластов медьдефицитных растений. Бишоп установил, что медь в отличие от марганца оказывает большое влияние на фоторедукцию и слабое — на реакцию Хилла (рис. 4). При медной недостаточности, особенно в присутствии гербицида ДХММ, происходит ингибирование фоторедукции на 78% (рис. 5), интенсивность фотосинтеза при этом уменьшается на 65%, в то время как реакция Хилла угнетена только на 25%. Бишоп предполагает, что медь является существенным компонентом механизма транспорта электронов пигмент­ной системы I.

В последние годы проводятся весьма интересные исследования бел­ков — компонентов цепи переноса электронов при фотосинтезе, в частности веществ, участвующих в фотовосстановлении НАДФ хлоропластов. Широко известна роль ферредоксина, содержащего негеминовое железо, — белка с низким окислительно-восстановительным потенциалом, от ко­торого зависит восстановление НАДФ препаратами целых хлоропластов. Как теперь установлено, кроме ферредоксина, для фотообразования НАДФ•Н2 необходим еще белок флавиновой природы, а именно ферредоксин-НАДФ-редуктаза, катализирующая перенос электрона от вос­становленного ферредоксина к НАДФ. Несколько лет назад из высших растений и водорослей был выделен новый участник НАДФ-восстанавливающей системы — пластоцианин. Он представляет собой медьсодержа­щий белок с кислыми свойствами, относительно небольшим молекулярным весом (порядка 21 000), в окисленном состоянии обладающий интенсивной голубой окраской. Из трех упомянутых белков пластоцианин наиболее прочно связан со структурой хлоропластов: даже гипотоническая обра­ботка целых пластид приводит к освобождению лишь незначительного количества этого вещества.

Пластоцианин был открыт Като и Такамия (Katoh, Takamiya, 1961) в хлоропластах хлореллы и шпината. Характер спектра пластоцианина свидетельствует об относительно высоком содержании в его молекуле тирозина и фенилаланина и об отсутствии или очень малом содержании триптофана (Мутускин, Пшенова, 1970). В листьях некоторых растений почти половина всей меди находится в виде этого медьсодер- жащего белка: пластоцианин окрашен в синий цвет. Это определяется тем, что Сu2+ связан с его белковой молекулой четырьмя координационными связями. Пластоцианин участвует в окислитель- но-восстановительных реакциях, но в отличие от настоящих оксидоредуктаз не способен к автооксидаций и в восстановленной форме не реагирует с молекулярным кислородом.

Так как пурпурные бактерии не содержат пластоцианина, то вначале быловысказано предположение об участии пластицианина в механизме выделения кислорода, отсутствующем в фотосинтетической системе пур­пурных бактерий. В дальнейшем, однако, выявилось, что пластоцианин участвует в выделении кислорода не непосредственно, а скорее в реакции образования сильного фотовосстановителя, являясь, как это было по­казано на Scenedesmusobliquus, существенным компонентом электронно-транспортной цепи пигментной системы Iв хлоропластах (Bishop, 1964; Fork, Urbach, 1965; Trebst, Elstner, 1965).

Требст и Эльстнер (Trebst, Elstner, 1965) показали зависимость реак­ции восстановления НАДФ от пластоцианина и получили данные, гово­рящие в пользу того, что пластоцианин — облигатный переносчик в си­стеме транспорта электронов при фотосинтезе. Вессельс (Wessels, 1965) обнаружил восстановление пластоцианином НАДФ+ фотовосстанавливающей активности в фрагментированных дигитонином хлоропластах шпината. Е.А.Акулова и Е.Н.Мух

еще рефераты
Еще работы по биологии